Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386849094> ?p ?o ?g. }
- W4386849094 endingPage "19126" @default.
- W4386849094 startingPage "19115" @default.
- W4386849094 abstract "The adsorption and diffusion behaviors of clusters on surfaces play critical roles in numerous important applications. Potential-based molecular dynamics simulations are a powerful tool to study these behaviors at the atomic scale. However, conventional potentials typically parametrized using bulk or surface properties, fail to accurately describe the intricate surface behavior of clusters due to the complexity of their atomic environments. Here, we develop a specialized machine learning potential (MLP) for describing Al clusters on surfaces, which is related to wide-ranging applications. The MLP development was performed using a workflow that is based on an adaptive iterative learning method and incorporates initialization, generalization, and specialization modules. By utilizing accurate data from density functional theory (DFT) calculations, the MLP achieves an impressive level of accuracy that closely approximates DFT while maintaining a high computational efficiency. The MLP successfully predicts the surface behavior of different Al clusters and a wide range of basic properties of the Al bulk and surfaces. Remarkably, despite being trained without data from Alx (x = 4–6, 12), the MLP accurately predicts the adsorption and diffusion properties of these clusters. This work highlights the capability of MLPs in the large-scale investigation of the surface phenomena of different clusters and provides a robust methodology for constructing accurate MLPs tailored to intricate surface systems." @default.
- W4386849094 created "2023-09-20" @default.
- W4386849094 creator A5013117795 @default.
- W4386849094 creator A5019388394 @default.
- W4386849094 creator A5022775073 @default.
- W4386849094 creator A5032625990 @default.
- W4386849094 creator A5046775442 @default.
- W4386849094 creator A5048684494 @default.
- W4386849094 creator A5049355566 @default.
- W4386849094 creator A5062302560 @default.
- W4386849094 creator A5077646734 @default.
- W4386849094 creator A5089448009 @default.
- W4386849094 date "2023-09-19" @default.
- W4386849094 modified "2023-09-30" @default.
- W4386849094 title "Advancing Accurate and Efficient Surface Behavior Modeling of Al Clusters with Machine Learning Potential" @default.
- W4386849094 cites W1584251617 @default.
- W4386849094 cites W1629464821 @default.
- W4386849094 cites W1979544533 @default.
- W4386849094 cites W1981368803 @default.
- W4386849094 cites W1986740670 @default.
- W4386849094 cites W1996921902 @default.
- W4386849094 cites W2007395042 @default.
- W4386849094 cites W2012189986 @default.
- W4386849094 cites W2025444507 @default.
- W4386849094 cites W2037545515 @default.
- W4386849094 cites W2061442132 @default.
- W4386849094 cites W2064807075 @default.
- W4386849094 cites W2083222334 @default.
- W4386849094 cites W2083415705 @default.
- W4386849094 cites W2087520707 @default.
- W4386849094 cites W2122427541 @default.
- W4386849094 cites W2326166120 @default.
- W4386849094 cites W2557838702 @default.
- W4386849094 cites W2585152223 @default.
- W4386849094 cites W2592939032 @default.
- W4386849094 cites W2775708988 @default.
- W4386849094 cites W2801456448 @default.
- W4386849094 cites W2804005253 @default.
- W4386849094 cites W2804030504 @default.
- W4386849094 cites W2883630045 @default.
- W4386849094 cites W2903039876 @default.
- W4386849094 cites W2966975829 @default.
- W4386849094 cites W2968923792 @default.
- W4386849094 cites W2987012376 @default.
- W4386849094 cites W3006005697 @default.
- W4386849094 cites W3014910550 @default.
- W4386849094 cites W3016785433 @default.
- W4386849094 cites W3045771481 @default.
- W4386849094 cites W3046323878 @default.
- W4386849094 cites W3049457262 @default.
- W4386849094 cites W3084115887 @default.
- W4386849094 cites W3086372695 @default.
- W4386849094 cites W3090555547 @default.
- W4386849094 cites W3093036756 @default.
- W4386849094 cites W3098509317 @default.
- W4386849094 cites W3101049976 @default.
- W4386849094 cites W3119697748 @default.
- W4386849094 cites W3132956480 @default.
- W4386849094 cites W3133206711 @default.
- W4386849094 cites W3133931590 @default.
- W4386849094 cites W3141927472 @default.
- W4386849094 cites W3164415374 @default.
- W4386849094 cites W3185227028 @default.
- W4386849094 cites W3187543199 @default.
- W4386849094 cites W3188144980 @default.
- W4386849094 cites W3189164715 @default.
- W4386849094 cites W3200297442 @default.
- W4386849094 cites W3201073812 @default.
- W4386849094 cites W3210084966 @default.
- W4386849094 cites W3213114102 @default.
- W4386849094 cites W4200077759 @default.
- W4386849094 cites W4200453695 @default.
- W4386849094 cites W4205778048 @default.
- W4386849094 cites W4206957138 @default.
- W4386849094 cites W4211254350 @default.
- W4386849094 cites W4213222004 @default.
- W4386849094 cites W4226530413 @default.
- W4386849094 cites W4281769979 @default.
- W4386849094 cites W4293089302 @default.
- W4386849094 cites W4297453865 @default.
- W4386849094 cites W4303628997 @default.
- W4386849094 cites W4319662713 @default.
- W4386849094 doi "https://doi.org/10.1021/acs.jpcc.3c03229" @default.
- W4386849094 hasPublicationYear "2023" @default.
- W4386849094 type Work @default.
- W4386849094 citedByCount "0" @default.
- W4386849094 crossrefType "journal-article" @default.
- W4386849094 hasAuthorship W4386849094A5013117795 @default.
- W4386849094 hasAuthorship W4386849094A5019388394 @default.
- W4386849094 hasAuthorship W4386849094A5022775073 @default.
- W4386849094 hasAuthorship W4386849094A5032625990 @default.
- W4386849094 hasAuthorship W4386849094A5046775442 @default.
- W4386849094 hasAuthorship W4386849094A5048684494 @default.
- W4386849094 hasAuthorship W4386849094A5049355566 @default.
- W4386849094 hasAuthorship W4386849094A5062302560 @default.
- W4386849094 hasAuthorship W4386849094A5077646734 @default.
- W4386849094 hasAuthorship W4386849094A5089448009 @default.
- W4386849094 hasConcept C114466953 @default.