Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386852181> ?p ?o ?g. }
Showing items 1 to 96 of
96
with 100 items per page.
- W4386852181 endingPage "22" @default.
- W4386852181 startingPage "16" @default.
- W4386852181 abstract "To explore the clinical value of a clinical radiomics model nomogram based on magnetic resonance imaging (MRI) for preoperative meningioma grading.We collected retrospectively 544 patients with pathological diagnosis of meningiomas were categorized into training (n = 380) and validation (n = 164) groups at the ratio of 7∶ 3. There were 3,376 radiomics features extracted from T2WI and T1C by shukun technology platform after manual segmentation using an independent blind method by two radiologists. The Selectpercentile and Lasso are used to filter the most strongly correlated features. Random forest (RF) radiomics model and clinical radiomics model nomogram were constructed respectively. The calibration, discrimination, and clinical validity were evaluated by using the calibration curve and decision analysis curve (DCA).The RF radiomics model based on T1C and T2WI was the most effective to predict meningioma grade before surgery among the six different classifiers. The predictive ability of clinical radiomics model was slightly higher than that of RF model alone. The AUC, SEN, SPE, and ACC of the training set were 0.949, 0.976, 0.785, and 0.826, and the AUC, SEN, SPE, and ACC of the validation set were 0.838, 0.829, 0.783, and 0.793, respectively. The calibration curve and Hosmer-Lemeshow test showed the predictive probability of the fusion model was similar to the actual differentiated LGM and HGM. The analysis of the decision curve showed that the clinical radiomics model could obtain the best clinical net profit.The clinical radiomics model nomogram based on T1C and T2WI has high accuracy and sensitivity for predicting meningioma grade." @default.
- W4386852181 created "2023-09-20" @default.
- W4386852181 creator A5009244523 @default.
- W4386852181 creator A5011299124 @default.
- W4386852181 creator A5020612218 @default.
- W4386852181 creator A5028160534 @default.
- W4386852181 creator A5028733167 @default.
- W4386852181 creator A5035832774 @default.
- W4386852181 creator A5043688833 @default.
- W4386852181 creator A5046881277 @default.
- W4386852181 creator A5083586333 @default.
- W4386852181 date "2023-12-01" @default.
- W4386852181 modified "2023-10-13" @default.
- W4386852181 title "Prediction of meningioma grade by constructing a clinical radiomics model nomogram based on magnetic resonance imaging" @default.
- W4386852181 cites W2097475056 @default.
- W4386852181 cites W2128739912 @default.
- W4386852181 cites W2768804389 @default.
- W4386852181 cites W2886393258 @default.
- W4386852181 cites W2888754973 @default.
- W4386852181 cites W2901383625 @default.
- W4386852181 cites W2919363685 @default.
- W4386852181 cites W2943973375 @default.
- W4386852181 cites W2968849816 @default.
- W4386852181 cites W2971334062 @default.
- W4386852181 cites W2994337165 @default.
- W4386852181 cites W3033000485 @default.
- W4386852181 cites W3045506849 @default.
- W4386852181 cites W3081555316 @default.
- W4386852181 cites W3083018348 @default.
- W4386852181 cites W3087590432 @default.
- W4386852181 cites W3095642462 @default.
- W4386852181 cites W3102028276 @default.
- W4386852181 cites W3111355294 @default.
- W4386852181 cites W3153680651 @default.
- W4386852181 cites W3162011411 @default.
- W4386852181 cites W3193740106 @default.
- W4386852181 cites W3194884279 @default.
- W4386852181 cites W3205272665 @default.
- W4386852181 cites W3205796131 @default.
- W4386852181 cites W3207759075 @default.
- W4386852181 cites W4206075908 @default.
- W4386852181 cites W4207069568 @default.
- W4386852181 cites W4242387611 @default.
- W4386852181 doi "https://doi.org/10.1016/j.mri.2023.09.002" @default.
- W4386852181 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37734573" @default.
- W4386852181 hasPublicationYear "2023" @default.
- W4386852181 type Work @default.
- W4386852181 citedByCount "0" @default.
- W4386852181 crossrefType "journal-article" @default.
- W4386852181 hasAuthorship W4386852181A5009244523 @default.
- W4386852181 hasAuthorship W4386852181A5011299124 @default.
- W4386852181 hasAuthorship W4386852181A5020612218 @default.
- W4386852181 hasAuthorship W4386852181A5028160534 @default.
- W4386852181 hasAuthorship W4386852181A5028733167 @default.
- W4386852181 hasAuthorship W4386852181A5035832774 @default.
- W4386852181 hasAuthorship W4386852181A5043688833 @default.
- W4386852181 hasAuthorship W4386852181A5046881277 @default.
- W4386852181 hasAuthorship W4386852181A5083586333 @default.
- W4386852181 hasConcept C126322002 @default.
- W4386852181 hasConcept C126838900 @default.
- W4386852181 hasConcept C143409427 @default.
- W4386852181 hasConcept C143998085 @default.
- W4386852181 hasConcept C2778559731 @default.
- W4386852181 hasConcept C2989005 @default.
- W4386852181 hasConcept C34626388 @default.
- W4386852181 hasConcept C58471807 @default.
- W4386852181 hasConcept C71924100 @default.
- W4386852181 hasConceptScore W4386852181C126322002 @default.
- W4386852181 hasConceptScore W4386852181C126838900 @default.
- W4386852181 hasConceptScore W4386852181C143409427 @default.
- W4386852181 hasConceptScore W4386852181C143998085 @default.
- W4386852181 hasConceptScore W4386852181C2778559731 @default.
- W4386852181 hasConceptScore W4386852181C2989005 @default.
- W4386852181 hasConceptScore W4386852181C34626388 @default.
- W4386852181 hasConceptScore W4386852181C58471807 @default.
- W4386852181 hasConceptScore W4386852181C71924100 @default.
- W4386852181 hasLocation W43868521811 @default.
- W4386852181 hasLocation W43868521812 @default.
- W4386852181 hasOpenAccess W4386852181 @default.
- W4386852181 hasPrimaryLocation W43868521811 @default.
- W4386852181 hasRelatedWork W3019441679 @default.
- W4386852181 hasRelatedWork W3182298349 @default.
- W4386852181 hasRelatedWork W4214927539 @default.
- W4386852181 hasRelatedWork W4285027199 @default.
- W4386852181 hasRelatedWork W4317602510 @default.
- W4386852181 hasRelatedWork W4319454359 @default.
- W4386852181 hasRelatedWork W4327603756 @default.
- W4386852181 hasRelatedWork W4327614594 @default.
- W4386852181 hasRelatedWork W4382984118 @default.
- W4386852181 hasRelatedWork W4385553002 @default.
- W4386852181 hasVolume "104" @default.
- W4386852181 isParatext "false" @default.
- W4386852181 isRetracted "false" @default.
- W4386852181 workType "article" @default.