Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386853156> ?p ?o ?g. }
Showing items 1 to 66 of
66
with 100 items per page.
- W4386853156 endingPage "2548" @default.
- W4386853156 startingPage "2548" @default.
- W4386853156 abstract "Electrochemical impedance spectroscopy (EIS) is a widely used electroanalytical technique. A consequence of small amplitude modulation of the electrochemical interface is the linearization of inherently nonlinear processes, easing analysis, but giving up some mechanistic discriminating power. An example of this diminished discriminating power is degeneracy among linearized physics-based models [1] and even equivalent circuits [2]. The discriminating power of EIS is further degraded in situations where a two-electrode cell configuration is required, in which case, the total cell impedance is the sum of two half-cell impedances, plus an ohmic drop of the electrolyte. The summative nature of two-electrode EIS (a positive parity signal) makes the assignment of physicochemical processes to one electrode or the other extremely challenging without additional information. We have shown that second harmonic nonlinear electrochemical impedance spectroscopy (NLEIS), a natural extension of EIS achieved with somewhat larger modulations, can break model degeneracy and provide more information than EIS alone. [3,4] An added feature of second harmonic NLEIS acquired in a two-electrode cell is that the signal arises from the difference between each half-cell response (a negative parity signal). The complementary parity between EIS and second harmonic NLEIS, when analyzed with a common physics-based model, makes discriminating half-cell processes from two-electrode measurements feasible. To pave the foundation of NLEIS analysis, the first (EIS) and second harmonic (NLEIS) impedance responses of a simple electrochemical interface are considered, building from well-known Helmholtz double layer, Butler–Volmer kinetics, and solid state Fickian diffusion (to align with experimental lithium insertion chemistry). The linearized portion of this model produces a classic Randles circuit with Warburg impedance, whereas the second harmonic reveals a dependence on charge transfer symmetry and the second derivative of the open circuit voltage with insertion charge. We then adopted and extended Paasch’s macro-homogeneous porous electrode theory [5] to describe the linear and nonlinear impedance responses of a porous electrode. Half-cell models are then combined into whole-cell models to describe lithium-ion battery (LIB) systems. Experimentally, EIS and second harmonic NLEIS obtained with 1.5 Ah Samsung 18650 NMC|C cells are analyzed. Figure 1 demonstrates that our more sophisticated extended Paasch model can accurately fit the positive parity EIS and negative parity NLEIS data with a total of 15 meaningful physicochemical parameters (11 for the linear response and 4 additional for the nonlinear response). A data analysis pipeline is built based on these models to analyze a dataset that composed of 48 commercial LIBs cycled under four different aging conditions, and evaluated at 10%, 30%, and 50% state of charge (SOC). The co-evolution of EIS and NLEIS parameters from our analysis provides several insights, with perhaps the most interesting being the simultaneous increase in charge transfer resistance on the positive electrode and the breaking of charge transfer symmetry at the same time (for low SOC). These results demonstrate that the coupling of EIS and NLEIS can advance electrochemical impedance analysis with small changes from traditional EIS. Open-source software is described that leverages impedance.py to enable the easy implementation of EIS and NLEIS data analysis. References [1] J.R. Wilson, D.T. Schwartz, S.B. Adler, Nonlinear electrochemical impedance spectroscopy for solid oxide fuel cell cathode materials, Electrochimica Acta . 51 (2006) 1389–1402. https://doi.org/10.1016/j.electacta.2005.02.109. [2] S. Fletcher, Tables of degenerate electrical networks for use in the equivalent‐circuit analysis of electrochemical systems, J. Electrochem. Soc . 141 (1994) 1823–1826. https://doi.org/10.1149/1.2055011. [3] M.D. Murbach, D.T. Schwartz, Extending newman’s pseudo-two-dimensional lithium-ion battery impedance simulation approach to include the nonlinear harmonic response, J. Electrochem. Soc. 164 (2017) E3311–E3320. https://doi.org/10.1149/2.0301711jes. [4] M.D. Murbach, V.W. Hu, D.T. Schwartz, Nonlinear electrochemical impedance spectroscopy of lithium-ion batteries: Experimental approach, analysis, and initial findings, J. Electrochem. Soc . 165 (2018) A2758–A2765. https://doi.org/10.1149/2.0711811jes. [5] G. Paasch, K. Micka, P. Gersdorf, Theory of the electrochemical impedance of macrohomogeneous porous electrodes, Electrochimica Acta . 38 (1993) 2653–2662. https://doi.org/10.1016/0013-4686(93)85083-B. Figure 1" @default.
- W4386853156 created "2023-09-20" @default.
- W4386853156 creator A5021779171 @default.
- W4386853156 creator A5035447663 @default.
- W4386853156 date "2023-08-28" @default.
- W4386853156 modified "2023-09-30" @default.
- W4386853156 title "Coupling Linear and Second-Harmonic Electrochemical Impedance Spectroscopy to Determine Half-Cell Physicochemical Processes from Measurements in Two-Electrode Cells" @default.
- W4386853156 doi "https://doi.org/10.1149/ma2023-01482548mtgabs" @default.
- W4386853156 hasPublicationYear "2023" @default.
- W4386853156 type Work @default.
- W4386853156 citedByCount "0" @default.
- W4386853156 crossrefType "journal-article" @default.
- W4386853156 hasAuthorship W4386853156A5021779171 @default.
- W4386853156 hasAuthorship W4386853156A5035447663 @default.
- W4386853156 hasConcept C113196181 @default.
- W4386853156 hasConcept C119599485 @default.
- W4386853156 hasConcept C121332964 @default.
- W4386853156 hasConcept C127413603 @default.
- W4386853156 hasConcept C147789679 @default.
- W4386853156 hasConcept C165801399 @default.
- W4386853156 hasConcept C17525397 @default.
- W4386853156 hasConcept C17829176 @default.
- W4386853156 hasConcept C185592680 @default.
- W4386853156 hasConcept C192562407 @default.
- W4386853156 hasConcept C23572009 @default.
- W4386853156 hasConcept C24326235 @default.
- W4386853156 hasConcept C30475298 @default.
- W4386853156 hasConcept C43617362 @default.
- W4386853156 hasConcept C52859227 @default.
- W4386853156 hasConcept C7040849 @default.
- W4386853156 hasConceptScore W4386853156C113196181 @default.
- W4386853156 hasConceptScore W4386853156C119599485 @default.
- W4386853156 hasConceptScore W4386853156C121332964 @default.
- W4386853156 hasConceptScore W4386853156C127413603 @default.
- W4386853156 hasConceptScore W4386853156C147789679 @default.
- W4386853156 hasConceptScore W4386853156C165801399 @default.
- W4386853156 hasConceptScore W4386853156C17525397 @default.
- W4386853156 hasConceptScore W4386853156C17829176 @default.
- W4386853156 hasConceptScore W4386853156C185592680 @default.
- W4386853156 hasConceptScore W4386853156C192562407 @default.
- W4386853156 hasConceptScore W4386853156C23572009 @default.
- W4386853156 hasConceptScore W4386853156C24326235 @default.
- W4386853156 hasConceptScore W4386853156C30475298 @default.
- W4386853156 hasConceptScore W4386853156C43617362 @default.
- W4386853156 hasConceptScore W4386853156C52859227 @default.
- W4386853156 hasConceptScore W4386853156C7040849 @default.
- W4386853156 hasIssue "48" @default.
- W4386853156 hasLocation W43868531561 @default.
- W4386853156 hasOpenAccess W4386853156 @default.
- W4386853156 hasPrimaryLocation W43868531561 @default.
- W4386853156 hasRelatedWork W2003595941 @default.
- W4386853156 hasRelatedWork W2058551485 @default.
- W4386853156 hasRelatedWork W2068623945 @default.
- W4386853156 hasRelatedWork W2155106170 @default.
- W4386853156 hasRelatedWork W2180830352 @default.
- W4386853156 hasRelatedWork W2205318605 @default.
- W4386853156 hasRelatedWork W2792103870 @default.
- W4386853156 hasRelatedWork W2899084033 @default.
- W4386853156 hasRelatedWork W4296684765 @default.
- W4386853156 hasRelatedWork W4382021005 @default.
- W4386853156 hasVolume "MA2023-01" @default.
- W4386853156 isParatext "false" @default.
- W4386853156 isRetracted "false" @default.
- W4386853156 workType "article" @default.