Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386853485> ?p ?o ?g. }
Showing items 1 to 76 of
76
with 100 items per page.
- W4386853485 endingPage "2191" @default.
- W4386853485 startingPage "2191" @default.
- W4386853485 abstract "Solar energy conversion of water and CO 2 into H 2 /CO by an integrated photo-electrochemical (IPEC) cell and utilizing concentrated solar light allows for high power density and, if carefully designed, delivers high solar-to-fuel efficiency [1], [2]. In such devices, light absorption, charge generation/separation/transport, electrochemical reactions, and mass and ionic transport are required to occur simultaneously. Managing the coupled photon, charge, mass, and heat transport is central to a functioning and stable device. If not carefully designed, challenging operating conditions (high irradiation fluxes, critical thermal management) can induce irreversible damage to the IPEC cell and impact its performance. Thus, the optimal design of a high-performance device is conditioned by the development of a multi-dimensional and multi-physics computational model capable of estimating experimentally inaccessible quantities in complex porous geometries [3]. While such models have already been developed for water splitting, computational modeling of CO 2 reduction under concentrated light is still missing. We present an IPEC cell computational model operating under highly concentrated radiation that accounts for both water splitting and CO 2 reduction in a zero-gap gas diffusion electrode configuration. The continuum modeling is based on the solution of the coupled conservation and transport equations: species conservation and transport with electrochemical reactions, mass and momentum conservation, conservation and transport of electron and holes in the semiconductors, and Maxwell’s equations for the light propagation and absorption. We quantify spatially resolved non-uniform fields (local temperature, partial current densities, molar species fractions, etc.), inhomogeneities (e.g., local hotspots that could damage sealing), and CO 2 conversion rates to demonstrate how such simulations can help to address engineering and operating conditions challenges. Finally, we show that the data obtained in experiments of an IPEC device operating under concentrated light are in agreement with our computational findings. Our simulations reveal that critical thermal management is required to improve IPEC cell efficiency. We provide evidence that challenging operating conditions (high solar irradiation concentration, low mass flow rate) can affect the CO partial current density, favor the competing hydrogen evolution reaction, lead to quartz window failure and decrease the photo-absorber efficiency. Overall, this work provides a validated multi-physics computational model of an IPEC cell operating with concentrated radiation that can be used to conduct feasibility studies and provide design guidelines for such thermally integrated IPEC devices for CO 2 reduction at large solar irradiation concentrations. Keywords : Solar fuel, simulation, concentrated light, high power [1] S. Tembhurne, F. Nandjou, S. Haussener, A thermally synergistic photo-electrochemical hydrogen generator operating under concentrated solar irradiation, Nat. Energy. 4 (2019) 399–407. https://doi.org/10.1038/s41560-019-0373-7. [2] E. Boutin, M. Patel, E. Kecsenovity, S. Suter, C. Janáky, S. Haussener, Photo-Electrochemical Conversion of CO2 Under Concentrated Sunlight Enables Combination of High Reaction Rate and Efficiency, Adv. Energy Mater. 12 (2022). https://doi.org/10.1002/aenm.202200585. [3] S. Tembhurne, S. Haussener, Integrated Photo-Electrochemical Solar Fuel Generators under Concentrated Irradiation, J. Electrochem. Soc. 163 (2016) H999–H1007. https://doi.org/10.1149/2.0321610jes." @default.
- W4386853485 created "2023-09-20" @default.
- W4386853485 creator A5041466191 @default.
- W4386853485 creator A5092900680 @default.
- W4386853485 date "2023-08-28" @default.
- W4386853485 modified "2023-09-27" @default.
- W4386853485 title "Computational Modeling of Photo-Electrochemical Reduction of CO<sub>2</sub> Utilizing Concentrated Light" @default.
- W4386853485 doi "https://doi.org/10.1149/ma2023-01372191mtgabs" @default.
- W4386853485 hasPublicationYear "2023" @default.
- W4386853485 type Work @default.
- W4386853485 citedByCount "0" @default.
- W4386853485 crossrefType "journal-article" @default.
- W4386853485 hasAuthorship W4386853485A5041466191 @default.
- W4386853485 hasAuthorship W4386853485A5092900680 @default.
- W4386853485 hasConcept C121332964 @default.
- W4386853485 hasConcept C125287762 @default.
- W4386853485 hasConcept C132543647 @default.
- W4386853485 hasConcept C147789679 @default.
- W4386853485 hasConcept C157206272 @default.
- W4386853485 hasConcept C159985019 @default.
- W4386853485 hasConcept C161790260 @default.
- W4386853485 hasConcept C164866673 @default.
- W4386853485 hasConcept C17525397 @default.
- W4386853485 hasConcept C185592680 @default.
- W4386853485 hasConcept C188082385 @default.
- W4386853485 hasConcept C192562407 @default.
- W4386853485 hasConcept C2780824857 @default.
- W4386853485 hasConcept C35590869 @default.
- W4386853485 hasConcept C49040817 @default.
- W4386853485 hasConcept C52859227 @default.
- W4386853485 hasConcept C55493867 @default.
- W4386853485 hasConcept C57879066 @default.
- W4386853485 hasConcept C62520636 @default.
- W4386853485 hasConcept C65165184 @default.
- W4386853485 hasConcept C92718894 @default.
- W4386853485 hasConceptScore W4386853485C121332964 @default.
- W4386853485 hasConceptScore W4386853485C125287762 @default.
- W4386853485 hasConceptScore W4386853485C132543647 @default.
- W4386853485 hasConceptScore W4386853485C147789679 @default.
- W4386853485 hasConceptScore W4386853485C157206272 @default.
- W4386853485 hasConceptScore W4386853485C159985019 @default.
- W4386853485 hasConceptScore W4386853485C161790260 @default.
- W4386853485 hasConceptScore W4386853485C164866673 @default.
- W4386853485 hasConceptScore W4386853485C17525397 @default.
- W4386853485 hasConceptScore W4386853485C185592680 @default.
- W4386853485 hasConceptScore W4386853485C188082385 @default.
- W4386853485 hasConceptScore W4386853485C192562407 @default.
- W4386853485 hasConceptScore W4386853485C2780824857 @default.
- W4386853485 hasConceptScore W4386853485C35590869 @default.
- W4386853485 hasConceptScore W4386853485C49040817 @default.
- W4386853485 hasConceptScore W4386853485C52859227 @default.
- W4386853485 hasConceptScore W4386853485C55493867 @default.
- W4386853485 hasConceptScore W4386853485C57879066 @default.
- W4386853485 hasConceptScore W4386853485C62520636 @default.
- W4386853485 hasConceptScore W4386853485C65165184 @default.
- W4386853485 hasConceptScore W4386853485C92718894 @default.
- W4386853485 hasIssue "37" @default.
- W4386853485 hasLocation W43868534851 @default.
- W4386853485 hasOpenAccess W4386853485 @default.
- W4386853485 hasPrimaryLocation W43868534851 @default.
- W4386853485 hasRelatedWork W2004083826 @default.
- W4386853485 hasRelatedWork W2024718800 @default.
- W4386853485 hasRelatedWork W2032193978 @default.
- W4386853485 hasRelatedWork W2059187865 @default.
- W4386853485 hasRelatedWork W2088688632 @default.
- W4386853485 hasRelatedWork W2133146042 @default.
- W4386853485 hasRelatedWork W2160162608 @default.
- W4386853485 hasRelatedWork W2946847166 @default.
- W4386853485 hasRelatedWork W4306734819 @default.
- W4386853485 hasRelatedWork W4385802597 @default.
- W4386853485 hasVolume "MA2023-01" @default.
- W4386853485 isParatext "false" @default.
- W4386853485 isRetracted "false" @default.
- W4386853485 workType "article" @default.