Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386853522> ?p ?o ?g. }
Showing items 1 to 74 of
74
with 100 items per page.
- W4386853522 endingPage "2305" @default.
- W4386853522 startingPage "2305" @default.
- W4386853522 abstract "There is a growing need to decrease reliance on the Haber-Bosch process. To convert nitrogen gas (N 2 ) into ammonia (NH 3 ) for fertilizers, this temperature- and pressure-intensive process consumes roughly 2–3% of global energy and releases over 740 million tons of CO 2 each year. Many microorganisms naturally convert or “fix” N 2 into ammonium (NH 4 + ) at room temperature and pressure using an enzyme called the nitrogenase. Attempts to increase NH 4 + yields from microorganisms through genetic engineering are seeing signs of success, but we lack methods to increase NH 4 + generation rates and overcome one of the largest challenges: O 2 gas. Increasing O 2 gas concentrations typically increases metabolic rates of aerobic microorganisms; however, in the case of microorganisms that fix N 2 (called diazotrophs), O 2 can shut down the nitrogenase and stop cell growth. To overcome these challenges, we are using electricity to drive N 2 fixation in exoelectrogenic bacteria. These bacteria have the unique ability to naturally transfer electrons to anode electrodes in microbial electrochemical technologies (METs). Increasing the voltage applied to METs increases the metabolic rates of exoelectrogens. The anode chamber is kept anaerobic, which eliminates O 2 -driven inhibition of the nitrogenase. We previously showed that the N 2 fixation rates of a mixed microbial community in a MET increased more than three times when the applied whole-cell potential increased from 0.7 V to 1.0 V. By adding a chemical inhibitor that prevented the incorporation of NH 4 + into larger biomolecules, NH 4 + was excreted by the cells and into the medium. Based on the acetylene reduction assay (a proxy for N 2 fixation), we estimated that we recovered about 10% of the theoretical NH 4 + generated by the cells. If close to 100% of the theoretical NH 4 + could be excreted from the cells and recovered, we predicted an energy demand of around 3 MJ/mol-NH 4 + , which is close to the range of value reported for the Haber-Bosch process. To develop METs that generate NH 4 + at competitive production rates and energy demands, we are now focusing on the model exoelectrogenic diazotroph Geobacter sulfurreducens . Using a single organism with a fully sequenced genome allows us to understand how the N 2 fixation process responds to electrochemical variables. Towards these efforts, we conducted a transcriptomic analysis of G. sulfurreducens at two fixed anode potentials: +0.15 V and −0.15 V. This approach revealed which genes are turned on and off in response to these potentials. The presence of NH 4 + decreased the expression of genes associated with N 2 fixation which was expected due to the known sensitivity of nitrogenases to NH 4 + . On the other hand, the two anode potentials had a dramatic and unexpected impact on the expression levels of N 2 fixation genes. At −0.15 V, nitrogenase genes were significantly up-regulated, as were genes associated with NH 4 + uptake and transport, such as glutamine and glutamate synthetases. Considering that −0.15 V provides less energy to the cells relative to +0.15 V (based on thermodynamic predictions), the results suggest that the cells responded to this highly energy-constrained environment by increasing expression of N 2 fixation pathways. Based on our new knowledge of how G. sulfurredcuens regulates N 2 fixation and NH 4 + production, we have developed new strains of G. sulfurreducens that can excrete NH 4 + during N 2 fixation. The new engineering toolkit that we have created in this bacterium can now be leveraged to maximize NH 4 + production in METs." @default.
- W4386853522 created "2023-09-20" @default.
- W4386853522 creator A5038335935 @default.
- W4386853522 creator A5067764414 @default.
- W4386853522 creator A5080516494 @default.
- W4386853522 creator A5087150940 @default.
- W4386853522 date "2023-08-28" @default.
- W4386853522 modified "2023-09-27" @default.
- W4386853522 title "(Invited) Using the Model Bacterium Geobacter Sulfurreducens to Understand Microbial Electrochemical Conversion of Nitrogen Gas into Ammonium" @default.
- W4386853522 doi "https://doi.org/10.1149/ma2023-01392305mtgabs" @default.
- W4386853522 hasPublicationYear "2023" @default.
- W4386853522 type Work @default.
- W4386853522 citedByCount "0" @default.
- W4386853522 crossrefType "journal-article" @default.
- W4386853522 hasAuthorship W4386853522A5038335935 @default.
- W4386853522 hasAuthorship W4386853522A5067764414 @default.
- W4386853522 hasAuthorship W4386853522A5080516494 @default.
- W4386853522 hasAuthorship W4386853522A5087150940 @default.
- W4386853522 hasConcept C107872376 @default.
- W4386853522 hasConcept C141280058 @default.
- W4386853522 hasConcept C145244307 @default.
- W4386853522 hasConcept C147789679 @default.
- W4386853522 hasConcept C165337572 @default.
- W4386853522 hasConcept C17525397 @default.
- W4386853522 hasConcept C175605896 @default.
- W4386853522 hasConcept C178790620 @default.
- W4386853522 hasConcept C181440489 @default.
- W4386853522 hasConcept C185592680 @default.
- W4386853522 hasConcept C2776062086 @default.
- W4386853522 hasConcept C2779870022 @default.
- W4386853522 hasConcept C523546767 @default.
- W4386853522 hasConcept C537208039 @default.
- W4386853522 hasConcept C54355233 @default.
- W4386853522 hasConcept C58123911 @default.
- W4386853522 hasConcept C86803240 @default.
- W4386853522 hasConcept C89395315 @default.
- W4386853522 hasConceptScore W4386853522C107872376 @default.
- W4386853522 hasConceptScore W4386853522C141280058 @default.
- W4386853522 hasConceptScore W4386853522C145244307 @default.
- W4386853522 hasConceptScore W4386853522C147789679 @default.
- W4386853522 hasConceptScore W4386853522C165337572 @default.
- W4386853522 hasConceptScore W4386853522C17525397 @default.
- W4386853522 hasConceptScore W4386853522C175605896 @default.
- W4386853522 hasConceptScore W4386853522C178790620 @default.
- W4386853522 hasConceptScore W4386853522C181440489 @default.
- W4386853522 hasConceptScore W4386853522C185592680 @default.
- W4386853522 hasConceptScore W4386853522C2776062086 @default.
- W4386853522 hasConceptScore W4386853522C2779870022 @default.
- W4386853522 hasConceptScore W4386853522C523546767 @default.
- W4386853522 hasConceptScore W4386853522C537208039 @default.
- W4386853522 hasConceptScore W4386853522C54355233 @default.
- W4386853522 hasConceptScore W4386853522C58123911 @default.
- W4386853522 hasConceptScore W4386853522C86803240 @default.
- W4386853522 hasConceptScore W4386853522C89395315 @default.
- W4386853522 hasIssue "39" @default.
- W4386853522 hasLocation W43868535221 @default.
- W4386853522 hasOpenAccess W4386853522 @default.
- W4386853522 hasPrimaryLocation W43868535221 @default.
- W4386853522 hasRelatedWork W1968666356 @default.
- W4386853522 hasRelatedWork W1977366158 @default.
- W4386853522 hasRelatedWork W2128330980 @default.
- W4386853522 hasRelatedWork W2155731386 @default.
- W4386853522 hasRelatedWork W2277134385 @default.
- W4386853522 hasRelatedWork W2302709258 @default.
- W4386853522 hasRelatedWork W2349845833 @default.
- W4386853522 hasRelatedWork W2460434216 @default.
- W4386853522 hasRelatedWork W2960486909 @default.
- W4386853522 hasRelatedWork W3165067657 @default.
- W4386853522 hasVolume "MA2023-01" @default.
- W4386853522 isParatext "false" @default.
- W4386853522 isRetracted "false" @default.
- W4386853522 workType "article" @default.