Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386853661> ?p ?o ?g. }
Showing items 1 to 82 of
82
with 100 items per page.
- W4386853661 endingPage "2035" @default.
- W4386853661 startingPage "2035" @default.
- W4386853661 abstract "Anion-exchange membranes (AEMs) have received increased interest in recent years as the electrolyte separator in different electrochemical energy conversion and storage (EECS) devices. [1] AEM fuel cells and electrolyzers devices can reach the performance level required by applications with electrocatalysts that do not require a high loading of platinum-group metals (PGMs) due to the alkaline environment at the electrodes. However, the AEM based EECS development and implementation is significantly hindered by the anion exchange membrane (AEM) stability during cell operation, their low OH- conductivity and the low kinetics of the electrocatalysts. In fact, the electrolytic anion-exchange membrane (AEM) is a crucial component which should allow good charge and water transport, i.e. high ionic conductivity, but should also guarantee good chemical, thermal and mechanical stability and high durability. [2] In this work, nanocomposite AEMs based on Polysulfone ionomer (PSU) and two different nanoadditives, Layered Double Hydroxide (LDH) and Nanoscale Ionic Materials (NIM), have been developed and studied. [3] LDHs are mineral anionic clays with elevated ion exchange capacity (IEC). They consist of the positively charged metal hydroxide layers with anions located in the interlayer space. This allows strong hydration of the material together with a large number of hydroxyls on the host layers forming a dense network of hydrogen bonds along the two-dimensional surface, therefore facilitating OH- ion conduction by diffusion mechanism. NIMs have a nanostructure consisting of a spherical silica core functionalized with an ionic oligomeric corona. Due to the extremely high number of functional groups present, these materials are able to significantly increase the ionic conduction capacity of the resulting electrolyte. [4] PSU is a thermoplastic polymer with high thermal stability, good chemical resistance and mechanical properties. However, since it has two activated positions per repetition unit for electrophilic aromatic substitution, it can undergo high degrees of functionalisation, which reduce the mechanical properties. We developed a two steps procedure, with allow a functionalization degree between 60 and 80%, preserving its stability. Nanocomposites AEMs were investigated in both OH - and HCO 3 - forms, comparing swelling capacity, ionic conductivity and water diffusion. The latter was studied by NMR spectroscopy, measuring the self-diffusion coefficient by the Pulse Field Gradient (PFG) NMR techniques. The nanocomposite membranes are able to maintain good hydration at high temperatures, and to create an adequate nanostructure with the polymer chains, which favour the Grotthuss diffusion mechanism for the OH- ions. Such feature is reflected in the ionic conductivity and in the alkali stability, where they demonstrated the highest conductivity and a reduced membrane degradation rate. Finally, electrolysis cell tests were conducted on MEAs based on these hybrid membranes, and preliminary results showed very promising performance. References [1] I. Vincent, D. Bessarabov, Renewable and Sustainable Energy Reviews 2018, 81, 1690. [2] C.G. Arges, L. Zhang, ACS Appl. Energy Mater. 2018 1, 2991. [3] C. Simari, C.,...and I. Nicotera, Electrochimica Acta 2022 , 403,139713. [4] L. Boutsika,...and I. Nicotera, Int. J. Hydrogen Energy, vol. 41, p. 47, 2016." @default.
- W4386853661 created "2023-09-20" @default.
- W4386853661 creator A5008995635 @default.
- W4386853661 creator A5023049775 @default.
- W4386853661 creator A5048576169 @default.
- W4386853661 creator A5058250351 @default.
- W4386853661 creator A5065902234 @default.
- W4386853661 date "2023-08-28" @default.
- W4386853661 modified "2023-09-27" @default.
- W4386853661 title "Nanocomposite Anion Exchange Membranes for Aems Electrolyzers: Ion Transport and Carbonation Studies" @default.
- W4386853661 doi "https://doi.org/10.1149/ma2023-01362035mtgabs" @default.
- W4386853661 hasPublicationYear "2023" @default.
- W4386853661 type Work @default.
- W4386853661 citedByCount "0" @default.
- W4386853661 crossrefType "journal-article" @default.
- W4386853661 hasAuthorship W4386853661A5008995635 @default.
- W4386853661 hasAuthorship W4386853661A5023049775 @default.
- W4386853661 hasAuthorship W4386853661A5048576169 @default.
- W4386853661 hasAuthorship W4386853661A5058250351 @default.
- W4386853661 hasAuthorship W4386853661A5065902234 @default.
- W4386853661 hasConcept C117760992 @default.
- W4386853661 hasConcept C127413603 @default.
- W4386853661 hasConcept C138679309 @default.
- W4386853661 hasConcept C145148216 @default.
- W4386853661 hasConcept C147789679 @default.
- W4386853661 hasConcept C171250308 @default.
- W4386853661 hasConcept C17525397 @default.
- W4386853661 hasConcept C178790620 @default.
- W4386853661 hasConcept C179104552 @default.
- W4386853661 hasConcept C185592680 @default.
- W4386853661 hasConcept C192562407 @default.
- W4386853661 hasConcept C2182769 @default.
- W4386853661 hasConcept C2775896084 @default.
- W4386853661 hasConcept C2778002958 @default.
- W4386853661 hasConcept C2779710395 @default.
- W4386853661 hasConcept C41625074 @default.
- W4386853661 hasConcept C42360764 @default.
- W4386853661 hasConcept C52859227 @default.
- W4386853661 hasConcept C55493867 @default.
- W4386853661 hasConcept C68801617 @default.
- W4386853661 hasConcept C92880739 @default.
- W4386853661 hasConceptScore W4386853661C117760992 @default.
- W4386853661 hasConceptScore W4386853661C127413603 @default.
- W4386853661 hasConceptScore W4386853661C138679309 @default.
- W4386853661 hasConceptScore W4386853661C145148216 @default.
- W4386853661 hasConceptScore W4386853661C147789679 @default.
- W4386853661 hasConceptScore W4386853661C171250308 @default.
- W4386853661 hasConceptScore W4386853661C17525397 @default.
- W4386853661 hasConceptScore W4386853661C178790620 @default.
- W4386853661 hasConceptScore W4386853661C179104552 @default.
- W4386853661 hasConceptScore W4386853661C185592680 @default.
- W4386853661 hasConceptScore W4386853661C192562407 @default.
- W4386853661 hasConceptScore W4386853661C2182769 @default.
- W4386853661 hasConceptScore W4386853661C2775896084 @default.
- W4386853661 hasConceptScore W4386853661C2778002958 @default.
- W4386853661 hasConceptScore W4386853661C2779710395 @default.
- W4386853661 hasConceptScore W4386853661C41625074 @default.
- W4386853661 hasConceptScore W4386853661C42360764 @default.
- W4386853661 hasConceptScore W4386853661C52859227 @default.
- W4386853661 hasConceptScore W4386853661C55493867 @default.
- W4386853661 hasConceptScore W4386853661C68801617 @default.
- W4386853661 hasConceptScore W4386853661C92880739 @default.
- W4386853661 hasIssue "36" @default.
- W4386853661 hasLocation W43868536611 @default.
- W4386853661 hasOpenAccess W4386853661 @default.
- W4386853661 hasPrimaryLocation W43868536611 @default.
- W4386853661 hasRelatedWork W1978610257 @default.
- W4386853661 hasRelatedWork W1995018336 @default.
- W4386853661 hasRelatedWork W2032675667 @default.
- W4386853661 hasRelatedWork W2037862918 @default.
- W4386853661 hasRelatedWork W2059510220 @default.
- W4386853661 hasRelatedWork W2088824255 @default.
- W4386853661 hasRelatedWork W2330290098 @default.
- W4386853661 hasRelatedWork W2983092942 @default.
- W4386853661 hasRelatedWork W4324092352 @default.
- W4386853661 hasRelatedWork W4381893246 @default.
- W4386853661 hasVolume "MA2023-01" @default.
- W4386853661 isParatext "false" @default.
- W4386853661 isRetracted "false" @default.
- W4386853661 workType "article" @default.