Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386853669> ?p ?o ?g. }
Showing items 1 to 80 of
80
with 100 items per page.
- W4386853669 endingPage "2067" @default.
- W4386853669 startingPage "2067" @default.
- W4386853669 abstract "Electrochemical H 2 production via low temperature H 2 O electrolysis is a promising strategy to facilitate decarbonization across sectors; 1 however, current high-performing proton exchange membrane (PEM) electrolyzers require the use of expensive and rare platinum-group metals (PGMs) for catalysts and hardware, limiting scale up feasibility. 2 More recently, anion exchange membrane (AEM) electrolyzers have emerged as an alternative strategy, combining the zero-gap approach employed by PEM with operation in an alkaline environment where many non-PGMs are thermodynamically stable. 3 In fact, oxides of first row transition metals including Ni, Fe, and Co have been proposed as promising anode catalyst alternatives to IrO 2 in AEM electrolyzers. 4–7 However, these materials suffer from high overpotentials (> 300 mV @ 10 mA/cm 2 ) 8 and kinetic improvements are needed to facilitate the deployment of this technology. Ni-Fe oxides have gained particular attention due to their high ex-situ activities and typically low material criticality compared to IrO 2 or other non-PGMs such as Co. 9 Ni and Fe are known to have a synergistic effect, with trace amounts of Fe in Ni catalysts leading to increased OER activity. 10 However, the mechanism behind the improved performance and the optimal Fe content is heavily debated in the literature; 11 for example, this activity enhancement has been attributed to increased electrical conductivity with increasing Fe content, 10 stabilization of the Ni 4+ state, 12 and a shift of the Ni (II/III) redox couple. 13 Furthermore, these studies have evaluated Ni-Fe catalysts in their metallic or oxy(hydroxide) forms, although device-level conditioning may passivate near-surfaces and minimize performance differences between catalysts with difference ex-situ oxide content. 14 Uncovering how Fe content changes over time-on-stream for nanoparticle oxides and correlating this to changes in activity is needed to facilitate optimization of these materials at the device level. To this end, this work evaluated the stability of NiFe 2 O 4 nanoparticles (30 nm) in alkaline environments, correlating changes in Fe composition to changes in activity. All tests were performed in a rotating disc electrode cell with Au working electrode (0.193 cm 2 ), Au counter electrode, and reversible hydrogen reference electrode. Tests were performed in 0.1 M NaOH electrolyte at room temperature with a catalyst loading of 17.8 μg M /cm 2 . We found that the activity of NiFe 2 O 4 improved over time-on-stream (+ 80 % in current at 1.65 V after 13.5 h) concurrent with a dissolution of Fe (2 – 8 wt% Fe loss). We hypothesize that the Fe content in NiFe 2 O 4 (48 wt% Fe) was prohibitively high, and that dissolution of Fe shifted this value closer to optimum, resulting in higher activity. For NiFe (oxy)hydroxide materials, optimal Fe content has been reported at 15 - 25 wt% Fe. 10 However, this value likely changes depending on the structure of the material and, relatedly, the relative abundances of Ni and Fe on the surface. We further looked at the effect of longer time on stream at 1.8 V (13.5 h – 27 h) and potentiodynamic cycling (1.4 - 1.8 V, 1.4 – 2.0 V, 0.0 – 2.0 V; 13.5 h) on NiFe 2 O 4 stability. The results, in turn, showed that catalyst reactivity for OER improved over time-on-stream by 50 – 80% for potentiostatic holds and by upwards 500% for cycling tests (Fig. 1). This activity improvement was found to be concurrent with Fe dissolution (determined from ICP-MS), which ranged from 2 – 8 wt% Fe loss for the potentiostatic stress test to upwards of 40 wt% Fe loss for the cycling tests. Increased time on stream (13.5 – 27 h) was found to not significantly impact the activity enhancement. These results show a correlation between Fe dissolution and activity improvement and suggest that the activity of nanoparticle NiFe 2 O 4 oxides may be electrochemical activated via this method, providing new insights into the viability of NiFe oxides as alternatives to IrO 2 for OER. [1] Borup et al., Electrochem. Soc. Interface 2021 , [2] IRENA Green Hydrogen Cost Reduction - Scaling up Electrolyzers to Meet the 1.5C Climate Goal 2020 , [3] Pourbaix, Atlas of Electrochemical Equilibria in Aqueous Solutions , 1974 , [4] Suen et al., Chem. Soc. Rev . 2017 , [5] Plevová et al., J. Power Sources 2021, [6] Burke et al., Chem. Mater. 2015 , [7] Anderson et al., J. Electrochem. Soc. 2020, [8] McCrory et al., J. Am. Chem. Soc 2015 , [9] European Commission, Report on Critical Raw Materials for the EU 2018 , [10] Trotochaud et al., J. Am. Chem. Soc . 2014 , [11] Anantharaj et al., Nano Energy 2021, [12] Li et al., Proc. Natl. Acad. Sci. 2017 , [13] Görlin et al., J. Am. Chem. Soc. 2016, [14] Alia et al., J. Electrochem. Soc . 2019 Figure 1" @default.
- W4386853669 created "2023-09-20" @default.
- W4386853669 creator A5029536182 @default.
- W4386853669 creator A5036308296 @default.
- W4386853669 creator A5072350973 @default.
- W4386853669 creator A5090914666 @default.
- W4386853669 date "2023-08-28" @default.
- W4386853669 modified "2023-09-27" @default.
- W4386853669 title "Electrochemical Activation of NiFe<sub>2</sub>O<sub>4</sub> for the Oxygen Evolution Reaction in Alkaline Media" @default.
- W4386853669 doi "https://doi.org/10.1149/ma2023-01362067mtgabs" @default.
- W4386853669 hasPublicationYear "2023" @default.
- W4386853669 type Work @default.
- W4386853669 citedByCount "0" @default.
- W4386853669 crossrefType "journal-article" @default.
- W4386853669 hasAuthorship W4386853669A5029536182 @default.
- W4386853669 hasAuthorship W4386853669A5036308296 @default.
- W4386853669 hasAuthorship W4386853669A5072350973 @default.
- W4386853669 hasAuthorship W4386853669A5090914666 @default.
- W4386853669 hasConcept C106773901 @default.
- W4386853669 hasConcept C117760992 @default.
- W4386853669 hasConcept C127413603 @default.
- W4386853669 hasConcept C132319479 @default.
- W4386853669 hasConcept C135473242 @default.
- W4386853669 hasConcept C145148216 @default.
- W4386853669 hasConcept C147789679 @default.
- W4386853669 hasConcept C161790260 @default.
- W4386853669 hasConcept C163127949 @default.
- W4386853669 hasConcept C17525397 @default.
- W4386853669 hasConcept C178790620 @default.
- W4386853669 hasConcept C179104552 @default.
- W4386853669 hasConcept C185592680 @default.
- W4386853669 hasConcept C192562407 @default.
- W4386853669 hasConcept C42360764 @default.
- W4386853669 hasConcept C49110097 @default.
- W4386853669 hasConcept C52859227 @default.
- W4386853669 hasConcept C55493867 @default.
- W4386853669 hasConcept C55904794 @default.
- W4386853669 hasConcept C68801617 @default.
- W4386853669 hasConcept C89395315 @default.
- W4386853669 hasConceptScore W4386853669C106773901 @default.
- W4386853669 hasConceptScore W4386853669C117760992 @default.
- W4386853669 hasConceptScore W4386853669C127413603 @default.
- W4386853669 hasConceptScore W4386853669C132319479 @default.
- W4386853669 hasConceptScore W4386853669C135473242 @default.
- W4386853669 hasConceptScore W4386853669C145148216 @default.
- W4386853669 hasConceptScore W4386853669C147789679 @default.
- W4386853669 hasConceptScore W4386853669C161790260 @default.
- W4386853669 hasConceptScore W4386853669C163127949 @default.
- W4386853669 hasConceptScore W4386853669C17525397 @default.
- W4386853669 hasConceptScore W4386853669C178790620 @default.
- W4386853669 hasConceptScore W4386853669C179104552 @default.
- W4386853669 hasConceptScore W4386853669C185592680 @default.
- W4386853669 hasConceptScore W4386853669C192562407 @default.
- W4386853669 hasConceptScore W4386853669C42360764 @default.
- W4386853669 hasConceptScore W4386853669C49110097 @default.
- W4386853669 hasConceptScore W4386853669C52859227 @default.
- W4386853669 hasConceptScore W4386853669C55493867 @default.
- W4386853669 hasConceptScore W4386853669C55904794 @default.
- W4386853669 hasConceptScore W4386853669C68801617 @default.
- W4386853669 hasConceptScore W4386853669C89395315 @default.
- W4386853669 hasIssue "36" @default.
- W4386853669 hasLocation W43868536691 @default.
- W4386853669 hasOpenAccess W4386853669 @default.
- W4386853669 hasPrimaryLocation W43868536691 @default.
- W4386853669 hasRelatedWork W2019102092 @default.
- W4386853669 hasRelatedWork W2034602020 @default.
- W4386853669 hasRelatedWork W2057884589 @default.
- W4386853669 hasRelatedWork W2351123820 @default.
- W4386853669 hasRelatedWork W2387133619 @default.
- W4386853669 hasRelatedWork W2389297250 @default.
- W4386853669 hasRelatedWork W2392112521 @default.
- W4386853669 hasRelatedWork W2752265652 @default.
- W4386853669 hasRelatedWork W4246991414 @default.
- W4386853669 hasRelatedWork W2185369225 @default.
- W4386853669 hasVolume "MA2023-01" @default.
- W4386853669 isParatext "false" @default.
- W4386853669 isRetracted "false" @default.
- W4386853669 workType "article" @default.