Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386853721> ?p ?o ?g. }
Showing items 1 to 76 of
76
with 100 items per page.
- W4386853721 endingPage "2141" @default.
- W4386853721 startingPage "2141" @default.
- W4386853721 abstract "After the absorption of light, the next steps in any artificial photosynthetic system are the generation, transport, and extraction of photoexcited charge carriers. These steps are well understood in solid state systems based on traditional semiconductors, such as Si and III-V absorbers, resulting in quantum efficiencies close to one for optimized devices. For metal oxide-based absorbers, which have attracted much interest in the past decades because of their relatively good (photo)chemical stability and low cost, the reported efficiencies tend to be much lower. This is often attributed to recombination at defects. While these may indeed adversely affect the efficiency, there are several other fundamental loss mechanisms in metal oxides that are not always fully appreciated. For example, certain metal ions exhibit localized d-d transitions that do not result in mobile charge carriers, resulting in a photogeneration yield < 1. Recent work showed that it is possible to quantify the fraction of mobile photoexcited carriers, from which an upper limit of the achievable photocurrent can be derived [1]. Losses can also occur in the form of recombination or carrier localization during transport. The chance of reaching the interface is often expressed as the carrier diffusion length, which in turn depends on the carrier lifetime and its mobility. Convenient contact-free methods to determine these parameters are time-resolved microwave conductivity (TRMC) and time-resolved THz spectroscopy (TRTS) [2]. Here, one of the challenges is to determine whether the decay in photoconductivity is due to a decay in carrier concentration (i.e., recombination), carrier mobility (trapping, polaron formation), or both. We recently developed a general analysis method for determining the diffusion length which is valid for time-dependent mobilities as well as time-dependent lifetimes [3]. Intringuingly, this method revealed a carrier diffusion length of only 15 nm for BiVO 4 , which is significantly shorter than previously reported values by us and others. The only way this short diffusion length can be reconciled with the high photocurrent densities reported for this material is by assuming field-assisted charge separation. The role of the electric field is, however, poorly understood in the photoelectrochemistry and photocatalysis communities [4]. In a system without externally applied bias, the electric field does not separate the charges; instead, charge separation is driven by the presence of selective contacts. During my presentation I will review these concepts and discuss how a better understanding of loss mechanisms, the role of the electric field, and selective contacts may help us design more efficient metal oxide-based photoelectrodes. References [1] D.A. Grave, D.S. Ellis, Y. Piekner, M. Kölbach, H. Dotan, A. Kay, P. Schnell, R. van de Krol, F.F. Abdi, D. Friedrich, A. Rothschild, “Extraction of mobile charge carrier photogeneration yield spectrum of ultrathin-film metal oxide photoanodes for solar water splitting”, Nat. Mater. 20, 833-840 (2021). [2] M. Kölbach, H. Hempel, K. Harbauer, M. Schleuning, A. Petsiuk, K. Höflich, V. Deinhart, D. Friedrich, R. Eichberger, F.F. Abdi, R. van de Krol, „Grain Boundaries Limit Charge Carrier Transport in Pulsed Laser Deposited a-SnWO 4 Thin Film Photoabsorbers”, ACS Appl. Energy Mater. 3, 4320-4330 (2020). [3] M. Schleuning, M. Kölbach, F.F. Abdi, K. Schwarzburg, M. Stolterfoht, R. Eichberger, R. van de Krol, F. Friedrich, H. Hempel, “Generalized Method to Extract Carrier Diffusion Length from Photoconductivity Transients: Cases of BiVO 4 , Halide Perovskites, and Amorphous and Crystalline Silicon”, PRX Energy 1(2), 023008 (2022). [4] M. Schleuning, I.Y. Ahmet, R. van de Krol, M.M. May, “The role of selective contacts and built-in field for charge separation and transport in photoelectrochemical devices”, Sust. Energy Fuels 6, 3701—3716 (2022)." @default.
- W4386853721 created "2023-09-20" @default.
- W4386853721 creator A5075451221 @default.
- W4386853721 date "2023-08-28" @default.
- W4386853721 modified "2023-10-02" @default.
- W4386853721 title "(Keynote) Recent Insights on Carrier Generation, Transport, and Extraction in Metal Oxide Photoelectrodes" @default.
- W4386853721 doi "https://doi.org/10.1149/ma2023-01372141mtgabs" @default.
- W4386853721 hasPublicationYear "2023" @default.
- W4386853721 type Work @default.
- W4386853721 citedByCount "0" @default.
- W4386853721 crossrefType "journal-article" @default.
- W4386853721 hasAuthorship W4386853721A5075451221 @default.
- W4386853721 hasConcept C104232198 @default.
- W4386853721 hasConcept C106782819 @default.
- W4386853721 hasConcept C108225325 @default.
- W4386853721 hasConcept C120665830 @default.
- W4386853721 hasConcept C121332964 @default.
- W4386853721 hasConcept C125287762 @default.
- W4386853721 hasConcept C159467904 @default.
- W4386853721 hasConcept C159985019 @default.
- W4386853721 hasConcept C171001562 @default.
- W4386853721 hasConcept C185592680 @default.
- W4386853721 hasConcept C191897082 @default.
- W4386853721 hasConcept C192562407 @default.
- W4386853721 hasConcept C198865614 @default.
- W4386853721 hasConcept C201999631 @default.
- W4386853721 hasConcept C2779845233 @default.
- W4386853721 hasConcept C2779851234 @default.
- W4386853721 hasConcept C41008148 @default.
- W4386853721 hasConcept C44838205 @default.
- W4386853721 hasConcept C49040817 @default.
- W4386853721 hasConcept C544956773 @default.
- W4386853721 hasConcept C76155785 @default.
- W4386853721 hasConcept C91881484 @default.
- W4386853721 hasConceptScore W4386853721C104232198 @default.
- W4386853721 hasConceptScore W4386853721C106782819 @default.
- W4386853721 hasConceptScore W4386853721C108225325 @default.
- W4386853721 hasConceptScore W4386853721C120665830 @default.
- W4386853721 hasConceptScore W4386853721C121332964 @default.
- W4386853721 hasConceptScore W4386853721C125287762 @default.
- W4386853721 hasConceptScore W4386853721C159467904 @default.
- W4386853721 hasConceptScore W4386853721C159985019 @default.
- W4386853721 hasConceptScore W4386853721C171001562 @default.
- W4386853721 hasConceptScore W4386853721C185592680 @default.
- W4386853721 hasConceptScore W4386853721C191897082 @default.
- W4386853721 hasConceptScore W4386853721C192562407 @default.
- W4386853721 hasConceptScore W4386853721C198865614 @default.
- W4386853721 hasConceptScore W4386853721C201999631 @default.
- W4386853721 hasConceptScore W4386853721C2779845233 @default.
- W4386853721 hasConceptScore W4386853721C2779851234 @default.
- W4386853721 hasConceptScore W4386853721C41008148 @default.
- W4386853721 hasConceptScore W4386853721C44838205 @default.
- W4386853721 hasConceptScore W4386853721C49040817 @default.
- W4386853721 hasConceptScore W4386853721C544956773 @default.
- W4386853721 hasConceptScore W4386853721C76155785 @default.
- W4386853721 hasConceptScore W4386853721C91881484 @default.
- W4386853721 hasIssue "37" @default.
- W4386853721 hasLocation W43868537211 @default.
- W4386853721 hasOpenAccess W4386853721 @default.
- W4386853721 hasPrimaryLocation W43868537211 @default.
- W4386853721 hasRelatedWork W1969655927 @default.
- W4386853721 hasRelatedWork W1974724913 @default.
- W4386853721 hasRelatedWork W2034443501 @default.
- W4386853721 hasRelatedWork W2074930217 @default.
- W4386853721 hasRelatedWork W2133777099 @default.
- W4386853721 hasRelatedWork W2315245267 @default.
- W4386853721 hasRelatedWork W2543677269 @default.
- W4386853721 hasRelatedWork W2589277812 @default.
- W4386853721 hasRelatedWork W2790839211 @default.
- W4386853721 hasRelatedWork W794414452 @default.
- W4386853721 hasVolume "MA2023-01" @default.
- W4386853721 isParatext "false" @default.
- W4386853721 isRetracted "false" @default.
- W4386853721 workType "article" @default.