Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386855094> ?p ?o ?g. }
Showing items 1 to 60 of
60
with 100 items per page.
- W4386855094 endingPage "784" @default.
- W4386855094 startingPage "784" @default.
- W4386855094 abstract "Slurry electrodes have been proposed as a means to enhance the scalability of hybrid redox flow battery (RFB) chemistries for better usability in utility scale energy storage applications 1–3 . In conventional hybrid RFB’s, scalability is limited due the spatial constraints of the flow cell and the metal deposited by the negative half-reaction on charge 1 . By using a slurry electrode, the solid metal can be deposited onto electrically conductive particles dispersed in the electrolyte instead of on the stationary electrode within the flow cell. In this way, hybrid RFB chemistries can achieve the same scalability as more commonly studied true RFB chemistries, such as all-vanadium. Due to the high abundance, low cost, and low toxicity of iron electrolytes, the all-iron RFB chemistry is of particular interest for use with a slurry electrode 2,4 . The usefulness of the slurry electrode depends on the current distribution of the plating reaction. To successfully decouple the storage and power capacities of the RFB and thus enhance its scalability 5 , the faradaic current of the plating reaction must occur predominantly on the mobile slurry particles, as opposed to on the stationary current collector 1 . This current distribution is dependent on a variety of factors, such as the applied overpotential, the electrical conductivity of the slurry, the ionic conductivity of the electrolyte, the kinetics of the reaction, and the rate of ionic mass transport to reaction sites. Ionic mass transport in electrolytes containing slurry electrodes may differ from ionic transport in neat electrolyte in interesting and important ways. Due to the volume fraction of the electrolyte occupied by solid particles, the effective concentration of the ionic species may be lower than in neat electrolyte. Further, the solid particle volume fraction hinders ionic diffusion by introducing diffusion path tortuosity. This effect is more severe in higher slurry particle loadings. In this work, the effect of varying dispersed solid particle loading on ionic diffusivity is investigated via voltammetry using a rotating disk electrode. The diffusivities of ionic iron species are measured as a function of the volume fraction of solids dispersed in the electrolyte. Comparisons with the Bruggeman correlation 6,7 are made and amendments to the Levich equation are considered. (1) Petek, T. J.; Hoyt, N. C.; Savinell, R. F.; Wainright, J. S. Slurry Electrodes for Iron Plating in an All-Iron Flow Battery. J. Power Sources 2015 , 294 , 620–626. https://doi.org/10.1016/j.jpowsour.2015.06.050. (2) Petek, T. J. Enhancing the Capacity of All-Iron Flow Batteries: Understanding Crossover and Slurry Electrodes. Ph.D. Thesis 2015 , No. May. (3) Narayanan, T. M.; Zhu, Y. G.; Gençer, E.; McKinley, G.; Shao-Horn, Y. Low-Cost Manganese Dioxide Semi-Solid Electrode for Flow Batteries. Joule 2021 , 5 (11), 2934–2954. https://doi.org/10.1016/j.joule.2021.07.010. (4) Dinesh, A.; Olivera, S.; Venkatesh, K.; Santosh, M. S.; Priya, M. G.; Inamuddin; Asiri, A. M.; Muralidhara, H. B. Iron-Based Flow Batteries to Store Renewable Energies. Environ. Chem. Lett. 2018 , 16 (3), 683–694. https://doi.org/10.1007/s10311-018-0709-8. (5) Weber, A. Z.; Mench, M. M.; Meyers, J. P.; Ross, P. N.; Jeffrey, T.; Liu, Q. Redox Flow Batteries , a Review Environmental Energy Technologies Division , Lawrence Berkeley National Laboratory , Department of Mechanical , Aerospace and Biomedical Engineering , University of Tennessee , Department of Chemical Engineering , McGill Un. 1–72. (6) Tjaden, B.; Cooper, S. J.; Brett, D. J.; Kramer, D.; Shearing, P. R. On the Origin and Application of the Bruggeman Correlation for Analysing Transport Phenomena in Electrochemical Systems. Curr. Opin. Chem. Eng. 2016 , 12 , 44–51. https://doi.org/10.1016/j.coche.2016.02.006. (7) Chung, D. W.; Ebner, M.; Ely, D. R.; Wood, V.; Edwin García, R. Validity of the Bruggeman Relation for Porous Electrodes. Model. Simul. Mater. Sci. Eng. 2013 , 21 (7). https://doi.org/10.1088/0965-0393/21/7/074009." @default.
- W4386855094 created "2023-09-20" @default.
- W4386855094 creator A5042549659 @default.
- W4386855094 creator A5067904793 @default.
- W4386855094 date "2023-08-28" @default.
- W4386855094 modified "2023-09-27" @default.
- W4386855094 title "Considerations for Ionic Diffusion in Slurry Electrolytes for Redox Flow Batteries" @default.
- W4386855094 doi "https://doi.org/10.1149/ma2023-013784mtgabs" @default.
- W4386855094 hasPublicationYear "2023" @default.
- W4386855094 type Work @default.
- W4386855094 citedByCount "0" @default.
- W4386855094 crossrefType "journal-article" @default.
- W4386855094 hasAuthorship W4386855094A5042549659 @default.
- W4386855094 hasAuthorship W4386855094A5067904793 @default.
- W4386855094 hasConcept C127413603 @default.
- W4386855094 hasConcept C147789679 @default.
- W4386855094 hasConcept C159985019 @default.
- W4386855094 hasConcept C17525397 @default.
- W4386855094 hasConcept C179104552 @default.
- W4386855094 hasConcept C185592680 @default.
- W4386855094 hasConcept C186460083 @default.
- W4386855094 hasConcept C192562407 @default.
- W4386855094 hasConcept C2777596839 @default.
- W4386855094 hasConcept C42360764 @default.
- W4386855094 hasConcept C52859227 @default.
- W4386855094 hasConcept C68801617 @default.
- W4386855094 hasConcept C94293008 @default.
- W4386855094 hasConceptScore W4386855094C127413603 @default.
- W4386855094 hasConceptScore W4386855094C147789679 @default.
- W4386855094 hasConceptScore W4386855094C159985019 @default.
- W4386855094 hasConceptScore W4386855094C17525397 @default.
- W4386855094 hasConceptScore W4386855094C179104552 @default.
- W4386855094 hasConceptScore W4386855094C185592680 @default.
- W4386855094 hasConceptScore W4386855094C186460083 @default.
- W4386855094 hasConceptScore W4386855094C192562407 @default.
- W4386855094 hasConceptScore W4386855094C2777596839 @default.
- W4386855094 hasConceptScore W4386855094C42360764 @default.
- W4386855094 hasConceptScore W4386855094C52859227 @default.
- W4386855094 hasConceptScore W4386855094C68801617 @default.
- W4386855094 hasConceptScore W4386855094C94293008 @default.
- W4386855094 hasIssue "3" @default.
- W4386855094 hasLocation W43868550941 @default.
- W4386855094 hasOpenAccess W4386855094 @default.
- W4386855094 hasPrimaryLocation W43868550941 @default.
- W4386855094 hasRelatedWork W2373948789 @default.
- W4386855094 hasRelatedWork W2390530511 @default.
- W4386855094 hasRelatedWork W2637639482 @default.
- W4386855094 hasRelatedWork W2748952813 @default.
- W4386855094 hasRelatedWork W2949313029 @default.
- W4386855094 hasRelatedWork W2955756195 @default.
- W4386855094 hasRelatedWork W3136479598 @default.
- W4386855094 hasRelatedWork W4285399022 @default.
- W4386855094 hasRelatedWork W4289866133 @default.
- W4386855094 hasRelatedWork W893130426 @default.
- W4386855094 hasVolume "MA2023-01" @default.
- W4386855094 isParatext "false" @default.
- W4386855094 isRetracted "false" @default.
- W4386855094 workType "article" @default.