Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386855346> ?p ?o ?g. }
Showing items 1 to 54 of
54
with 100 items per page.
- W4386855346 endingPage "1221" @default.
- W4386855346 startingPage "1221" @default.
- W4386855346 abstract "Biofluids, most notably serum, contain many molecules that together may help to define the physiological state of a person. A grand challenge is to use serum to identify a clinical state with a high degree of certainty. Rather than attempting to accomplish biomarker development on a one-to-one recognition basis, it may be more effective to determine a whole clinical state via perception-based platforms due to recent achievements in sensor technologies and computational algorithms. In this talk, we present the development of carbon nanotube-based nanosensor arrays wherein the optical responses of the nanotubes were used to train machine learning models. We introduce the optical and chemical diversity of nanosensor array using molecular masking effects of DNA-wrapping and covalent functionalization of fluorescent quantum defects on nanotube surface. Machine learning can be employed to process the complex spectral responses of nanosensors and recognize spectroscopic fingerprints of certain clinical states from serum. We will discuss how these methods can complement and improve conventional diagnostic assays." @default.
- W4386855346 created "2023-09-20" @default.
- W4386855346 creator A5037355958 @default.
- W4386855346 creator A5058278002 @default.
- W4386855346 creator A5068929256 @default.
- W4386855346 creator A5072974225 @default.
- W4386855346 creator A5092171967 @default.
- W4386855346 creator A5092900988 @default.
- W4386855346 date "2023-08-28" @default.
- W4386855346 modified "2023-09-27" @default.
- W4386855346 title "Advanced Data Analytics and Organic Color Centers for Diagnostic Applications" @default.
- W4386855346 doi "https://doi.org/10.1149/ma2023-01101221mtgabs" @default.
- W4386855346 hasPublicationYear "2023" @default.
- W4386855346 type Work @default.
- W4386855346 citedByCount "0" @default.
- W4386855346 crossrefType "journal-article" @default.
- W4386855346 hasAuthorship W4386855346A5037355958 @default.
- W4386855346 hasAuthorship W4386855346A5058278002 @default.
- W4386855346 hasAuthorship W4386855346A5068929256 @default.
- W4386855346 hasAuthorship W4386855346A5072974225 @default.
- W4386855346 hasAuthorship W4386855346A5092171967 @default.
- W4386855346 hasAuthorship W4386855346A5092900988 @default.
- W4386855346 hasConcept C154945302 @default.
- W4386855346 hasConcept C171250308 @default.
- W4386855346 hasConcept C192562407 @default.
- W4386855346 hasConcept C2522767166 @default.
- W4386855346 hasConcept C41008148 @default.
- W4386855346 hasConcept C41858301 @default.
- W4386855346 hasConceptScore W4386855346C154945302 @default.
- W4386855346 hasConceptScore W4386855346C171250308 @default.
- W4386855346 hasConceptScore W4386855346C192562407 @default.
- W4386855346 hasConceptScore W4386855346C2522767166 @default.
- W4386855346 hasConceptScore W4386855346C41008148 @default.
- W4386855346 hasConceptScore W4386855346C41858301 @default.
- W4386855346 hasIssue "10" @default.
- W4386855346 hasLocation W43868553461 @default.
- W4386855346 hasOpenAccess W4386855346 @default.
- W4386855346 hasPrimaryLocation W43868553461 @default.
- W4386855346 hasRelatedWork W1510448010 @default.
- W4386855346 hasRelatedWork W1559608182 @default.
- W4386855346 hasRelatedWork W2137577343 @default.
- W4386855346 hasRelatedWork W2890344412 @default.
- W4386855346 hasRelatedWork W2899084033 @default.
- W4386855346 hasRelatedWork W3003844119 @default.
- W4386855346 hasRelatedWork W3043329414 @default.
- W4386855346 hasRelatedWork W3155172282 @default.
- W4386855346 hasRelatedWork W3167201937 @default.
- W4386855346 hasRelatedWork W4211175444 @default.
- W4386855346 hasVolume "MA2023-01" @default.
- W4386855346 isParatext "false" @default.
- W4386855346 isRetracted "false" @default.
- W4386855346 workType "article" @default.