Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386857671> ?p ?o ?g. }
- W4386857671 endingPage "103635" @default.
- W4386857671 startingPage "103628" @default.
- W4386857671 abstract "Aiming at the limitations of existing fire detection technology and the multi-dimensional challenge of tourist satisfaction analysis, this study proposes a series of innovative methods and models. Regarding fire detection, Depth Separable Convolution (DSC) and multi-scale detection structure are introduced to improve the You Only Look Once version 3 (YOLOv3) model. Moreover, the DSC-Anchor-Isoft-Non Maximum Suppression-YOLO (DAI-YOLO) model is implemented for the fire detection of scenic spots. The experimental results show that the precision, recall, and average precision of the DAI-YOLO model are 92.1%, 84.2%, and 84.6%, respectively, compared with other models, a minimum increase of 4.1%, 8.8%, and 6.0%, with higher detection accuracy and performance. Based on the analysis of tourist satisfaction, a comprehensive index system is constructed using the grounded theory of text mining, and emotion analysis is integrated into the satisfaction evaluation to reveal tourists’ evaluation of scenic spots more comprehensively. According to the analysis, the environmental factor receives the highest satisfaction rating, reaching a positive rate of 98.78%. However, the satisfaction evaluation of scenic spot management is relatively low, accounting for 6.06% of the negative evaluation. The importance-satisfaction analysis reveals that the key factors affecting tourist satisfaction are traffic level, scenic spot tickets, and service. The results of this study provide valuable reference for the managers and researchers of scenic spots and are expected to contribute to the construction of a safer and more satisfying tourism experience." @default.
- W4386857671 created "2023-09-20" @default.
- W4386857671 creator A5013687297 @default.
- W4386857671 date "2023-01-01" @default.
- W4386857671 modified "2023-10-18" @default.
- W4386857671 title "The Analysis of Tourist Satisfaction Integrating the Artistic Intelligence Convolutional Neural Network and Internet of Things Technology" @default.
- W4386857671 cites W2903942159 @default.
- W4386857671 cites W2943015133 @default.
- W4386857671 cites W2969585684 @default.
- W4386857671 cites W2972838552 @default.
- W4386857671 cites W2981241347 @default.
- W4386857671 cites W2982463326 @default.
- W4386857671 cites W2992329172 @default.
- W4386857671 cites W2995937089 @default.
- W4386857671 cites W3002485616 @default.
- W4386857671 cites W3004676009 @default.
- W4386857671 cites W3012420847 @default.
- W4386857671 cites W3020703583 @default.
- W4386857671 cites W3036803033 @default.
- W4386857671 cites W3047185736 @default.
- W4386857671 cites W3092916389 @default.
- W4386857671 cites W3100733145 @default.
- W4386857671 cites W3138948977 @default.
- W4386857671 cites W3156191877 @default.
- W4386857671 cites W3161728163 @default.
- W4386857671 cites W3196358161 @default.
- W4386857671 cites W3202825385 @default.
- W4386857671 cites W3204076644 @default.
- W4386857671 cites W3214445496 @default.
- W4386857671 cites W3216859942 @default.
- W4386857671 cites W4200340862 @default.
- W4386857671 cites W4200555195 @default.
- W4386857671 cites W4206953494 @default.
- W4386857671 cites W4210289989 @default.
- W4386857671 cites W4210976645 @default.
- W4386857671 cites W4213193982 @default.
- W4386857671 cites W4213223813 @default.
- W4386857671 cites W4214557193 @default.
- W4386857671 cites W4220709098 @default.
- W4386857671 cites W4220763407 @default.
- W4386857671 cites W4220946781 @default.
- W4386857671 cites W4220952273 @default.
- W4386857671 cites W4224219807 @default.
- W4386857671 cites W4226520610 @default.
- W4386857671 cites W4229084040 @default.
- W4386857671 cites W4229372162 @default.
- W4386857671 cites W4288450768 @default.
- W4386857671 cites W4288720571 @default.
- W4386857671 cites W4298110846 @default.
- W4386857671 cites W4306369157 @default.
- W4386857671 cites W4306404511 @default.
- W4386857671 cites W4313325197 @default.
- W4386857671 cites W4313537271 @default.
- W4386857671 cites W4315648498 @default.
- W4386857671 cites W4318822226 @default.
- W4386857671 cites W4319755473 @default.
- W4386857671 cites W4320341958 @default.
- W4386857671 cites W4383694971 @default.
- W4386857671 cites W4384563036 @default.
- W4386857671 cites W4385300498 @default.
- W4386857671 doi "https://doi.org/10.1109/access.2023.3317251" @default.
- W4386857671 hasPublicationYear "2023" @default.
- W4386857671 type Work @default.
- W4386857671 citedByCount "0" @default.
- W4386857671 crossrefType "journal-article" @default.
- W4386857671 hasAuthorship W4386857671A5013687297 @default.
- W4386857671 hasBestOaLocation W43868576711 @default.
- W4386857671 hasConcept C124101348 @default.
- W4386857671 hasConcept C144133560 @default.
- W4386857671 hasConcept C154945302 @default.
- W4386857671 hasConcept C162853370 @default.
- W4386857671 hasConcept C166957645 @default.
- W4386857671 hasConcept C18918823 @default.
- W4386857671 hasConcept C205649164 @default.
- W4386857671 hasConcept C2780378061 @default.
- W4386857671 hasConcept C41008148 @default.
- W4386857671 hasConcept C81363708 @default.
- W4386857671 hasConceptScore W4386857671C124101348 @default.
- W4386857671 hasConceptScore W4386857671C144133560 @default.
- W4386857671 hasConceptScore W4386857671C154945302 @default.
- W4386857671 hasConceptScore W4386857671C162853370 @default.
- W4386857671 hasConceptScore W4386857671C166957645 @default.
- W4386857671 hasConceptScore W4386857671C18918823 @default.
- W4386857671 hasConceptScore W4386857671C205649164 @default.
- W4386857671 hasConceptScore W4386857671C2780378061 @default.
- W4386857671 hasConceptScore W4386857671C41008148 @default.
- W4386857671 hasConceptScore W4386857671C81363708 @default.
- W4386857671 hasLocation W43868576711 @default.
- W4386857671 hasOpenAccess W4386857671 @default.
- W4386857671 hasPrimaryLocation W43868576711 @default.
- W4386857671 hasRelatedWork W2352379149 @default.
- W4386857671 hasRelatedWork W2369032308 @default.
- W4386857671 hasRelatedWork W2376872419 @default.
- W4386857671 hasRelatedWork W2386798499 @default.
- W4386857671 hasRelatedWork W2391061603 @default.
- W4386857671 hasRelatedWork W2422640710 @default.
- W4386857671 hasRelatedWork W2947584120 @default.
- W4386857671 hasRelatedWork W2977338326 @default.