Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386860498> ?p ?o ?g. }
Showing items 1 to 87 of
87
with 100 items per page.
- W4386860498 endingPage "121646" @default.
- W4386860498 startingPage "121646" @default.
- W4386860498 abstract "Since there have been more and more incidents of women being harassed in the recent past, girls need to think twice before going out of their houses. Sometimes, they are not even safe in their house or workplace. These circumstance doesn’t change for children of all genders who stay alone because of their working parents or for other reasons. Also, there is no such organized procedure to ensure safety and take women and children out of such violence and harassment. To address this problem, the authors of this paper developed an Android-based automated system to detect danger for women and children using audio from the surroundings. As the Android phone is available to everyone nowadays, they focused on using this device rather than developing a system on some external hardware. Different signal processing methods with deep learning techniques are used for this work. This work also addresses noise from the environment for any chaos and nullifies them using different noise reduction techniques such as Reduce Energy Noise, Reduce Mel Frequency Cepstrum Coefficient (MFCC) up Noise, Reduce Median Noise, Reduce Centroid Noise, Audio DeNoise, Noisereduce by Sainburf et al. & Butterworth high pass filter. The Noisereduce by Sainburg et al. along with the InceptionV3 model architecture turns out to be the best to classify audio with 95.51% accuracy. A new model called AudioViT is introduced. It uses a Visual Transformer and Residual Network to identify the audio signal. The Android application also takes necessary action when any unfavorable situation is detected. Android device users can use this application without any cost, which will pave the way to ensure the safety of women and children." @default.
- W4386860498 created "2023-09-20" @default.
- W4386860498 creator A5046026148 @default.
- W4386860498 creator A5051200510 @default.
- W4386860498 creator A5080595441 @default.
- W4386860498 date "2024-03-01" @default.
- W4386860498 modified "2023-10-02" @default.
- W4386860498 title "Audio signal based danger detection using signal processing and deep learning" @default.
- W4386860498 cites W2052666245 @default.
- W4386860498 cites W2097117768 @default.
- W4386860498 cites W2183341477 @default.
- W4386860498 cites W2194775991 @default.
- W4386860498 cites W2248392240 @default.
- W4386860498 cites W2249305730 @default.
- W4386860498 cites W2310663644 @default.
- W4386860498 cites W2395579298 @default.
- W4386860498 cites W2531409750 @default.
- W4386860498 cites W2609691531 @default.
- W4386860498 cites W2734690441 @default.
- W4386860498 cites W2909043716 @default.
- W4386860498 cites W2911837149 @default.
- W4386860498 cites W2963163009 @default.
- W4386860498 cites W2963446712 @default.
- W4386860498 cites W2965120462 @default.
- W4386860498 cites W2966335536 @default.
- W4386860498 cites W3006816824 @default.
- W4386860498 cites W3024508828 @default.
- W4386860498 cites W3055892316 @default.
- W4386860498 cites W3093377669 @default.
- W4386860498 cites W3155610073 @default.
- W4386860498 cites W3160745714 @default.
- W4386860498 cites W3165906627 @default.
- W4386860498 cites W3167996968 @default.
- W4386860498 cites W3195217426 @default.
- W4386860498 cites W3214803265 @default.
- W4386860498 cites W4225147166 @default.
- W4386860498 cites W4306935928 @default.
- W4386860498 doi "https://doi.org/10.1016/j.eswa.2023.121646" @default.
- W4386860498 hasPublicationYear "2024" @default.
- W4386860498 type Work @default.
- W4386860498 citedByCount "0" @default.
- W4386860498 crossrefType "journal-article" @default.
- W4386860498 hasAuthorship W4386860498A5046026148 @default.
- W4386860498 hasAuthorship W4386860498A5051200510 @default.
- W4386860498 hasAuthorship W4386860498A5080595441 @default.
- W4386860498 hasConcept C111919701 @default.
- W4386860498 hasConcept C127220857 @default.
- W4386860498 hasConcept C13895895 @default.
- W4386860498 hasConcept C151989614 @default.
- W4386860498 hasConcept C154945302 @default.
- W4386860498 hasConcept C163294075 @default.
- W4386860498 hasConcept C28490314 @default.
- W4386860498 hasConcept C41008148 @default.
- W4386860498 hasConcept C52622490 @default.
- W4386860498 hasConcept C557433098 @default.
- W4386860498 hasConcept C64922751 @default.
- W4386860498 hasConceptScore W4386860498C111919701 @default.
- W4386860498 hasConceptScore W4386860498C127220857 @default.
- W4386860498 hasConceptScore W4386860498C13895895 @default.
- W4386860498 hasConceptScore W4386860498C151989614 @default.
- W4386860498 hasConceptScore W4386860498C154945302 @default.
- W4386860498 hasConceptScore W4386860498C163294075 @default.
- W4386860498 hasConceptScore W4386860498C28490314 @default.
- W4386860498 hasConceptScore W4386860498C41008148 @default.
- W4386860498 hasConceptScore W4386860498C52622490 @default.
- W4386860498 hasConceptScore W4386860498C557433098 @default.
- W4386860498 hasConceptScore W4386860498C64922751 @default.
- W4386860498 hasFunder F4320329623 @default.
- W4386860498 hasLocation W43868604981 @default.
- W4386860498 hasOpenAccess W4386860498 @default.
- W4386860498 hasPrimaryLocation W43868604981 @default.
- W4386860498 hasRelatedWork W166775500 @default.
- W4386860498 hasRelatedWork W1828907027 @default.
- W4386860498 hasRelatedWork W2006547307 @default.
- W4386860498 hasRelatedWork W2100364523 @default.
- W4386860498 hasRelatedWork W2146858963 @default.
- W4386860498 hasRelatedWork W2543934736 @default.
- W4386860498 hasRelatedWork W2555630001 @default.
- W4386860498 hasRelatedWork W4312215403 @default.
- W4386860498 hasRelatedWork W4368276095 @default.
- W4386860498 hasRelatedWork W4383426624 @default.
- W4386860498 hasVolume "237" @default.
- W4386860498 isParatext "false" @default.
- W4386860498 isRetracted "false" @default.
- W4386860498 workType "article" @default.