Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386860718> ?p ?o ?g. }
- W4386860718 endingPage "46448" @default.
- W4386860718 startingPage "46440" @default.
- W4386860718 abstract "Flexible piezoresistive sensors are core components of many wearable devices to detect deformation and motion. However, it is still a challenge to conveniently prepare high-precision sensors using natural materials and identify similar short vibration signals. In this study, inspired by microstructures of human skins, biomass flexible piezoresistive sensors were prepared by assembling two wrinkled surfaces of konjac glucomannan and k-carrageenan composite hydrogel. The wrinkle structures were conveniently created by hardness gradient-induced surface buckling and coated with MXene sheets to capture weak pressure signals. The sensor was applied to detect various slight body movements, and a machine learning method was used to enhance the identification of similar and short throat vibration signals. The results showed that the sensor exhibited a high sensitivity of 5.1 kPa-1 under low pressure (50 Pa), a fast response time (104 ms), and high stability over 100 cycles. The XGBoost machine learning model accurately distinguished short voice vibrations similar to those of individual English letters. Moreover, experiments and numerical simulations were carried out to reveal the mechanism of the wrinkle structure preparation and the excellent sensing performance. This biomass sensor preparation and the machine learning method will promote the optimization and application of wearable devices." @default.
- W4386860718 created "2023-09-20" @default.
- W4386860718 creator A5016827606 @default.
- W4386860718 creator A5024069825 @default.
- W4386860718 creator A5049402655 @default.
- W4386860718 creator A5050263638 @default.
- W4386860718 creator A5069286054 @default.
- W4386860718 creator A5070686675 @default.
- W4386860718 creator A5072852508 @default.
- W4386860718 creator A5072964829 @default.
- W4386860718 date "2023-09-19" @default.
- W4386860718 modified "2023-10-15" @default.
- W4386860718 title "Machine Learning-Enhanced Biomass Pressure Sensor with Embedded Wrinkle Structures Created by Surface Buckling" @default.
- W4386860718 cites W1920335627 @default.
- W4386860718 cites W1989172022 @default.
- W4386860718 cites W2049458738 @default.
- W4386860718 cites W2063182692 @default.
- W4386860718 cites W2220753543 @default.
- W4386860718 cites W2785597507 @default.
- W4386860718 cites W2789630927 @default.
- W4386860718 cites W2869467597 @default.
- W4386860718 cites W2898731202 @default.
- W4386860718 cites W2943740832 @default.
- W4386860718 cites W2963581668 @default.
- W4386860718 cites W2964936249 @default.
- W4386860718 cites W2972453911 @default.
- W4386860718 cites W2980399996 @default.
- W4386860718 cites W2992737960 @default.
- W4386860718 cites W2993158287 @default.
- W4386860718 cites W3000451885 @default.
- W4386860718 cites W3006944228 @default.
- W4386860718 cites W3026312221 @default.
- W4386860718 cites W3042885620 @default.
- W4386860718 cites W3082141507 @default.
- W4386860718 cites W3094681254 @default.
- W4386860718 cites W3118668652 @default.
- W4386860718 cites W3125930444 @default.
- W4386860718 cites W3128644560 @default.
- W4386860718 cites W3132159018 @default.
- W4386860718 cites W3135216471 @default.
- W4386860718 cites W3136217797 @default.
- W4386860718 cites W3151640016 @default.
- W4386860718 cites W3155911357 @default.
- W4386860718 cites W3155973935 @default.
- W4386860718 cites W3162518478 @default.
- W4386860718 cites W3202238298 @default.
- W4386860718 cites W3202724681 @default.
- W4386860718 cites W3215541590 @default.
- W4386860718 cites W4200105910 @default.
- W4386860718 cites W4200469715 @default.
- W4386860718 cites W4205245999 @default.
- W4386860718 cites W4206575091 @default.
- W4386860718 cites W4211189789 @default.
- W4386860718 cites W4213378969 @default.
- W4386860718 cites W4220751861 @default.
- W4386860718 cites W4220876513 @default.
- W4386860718 cites W4223906088 @default.
- W4386860718 cites W4224236402 @default.
- W4386860718 cites W4283320106 @default.
- W4386860718 cites W4296551298 @default.
- W4386860718 cites W4296618055 @default.
- W4386860718 cites W4296793586 @default.
- W4386860718 cites W4308870395 @default.
- W4386860718 cites W4323042226 @default.
- W4386860718 cites W4363673635 @default.
- W4386860718 cites W4380087489 @default.
- W4386860718 doi "https://doi.org/10.1021/acsami.3c06809" @default.
- W4386860718 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37725344" @default.
- W4386860718 hasPublicationYear "2023" @default.
- W4386860718 type Work @default.
- W4386860718 citedByCount "0" @default.
- W4386860718 crossrefType "journal-article" @default.
- W4386860718 hasAuthorship W4386860718A5016827606 @default.
- W4386860718 hasAuthorship W4386860718A5024069825 @default.
- W4386860718 hasAuthorship W4386860718A5049402655 @default.
- W4386860718 hasAuthorship W4386860718A5050263638 @default.
- W4386860718 hasAuthorship W4386860718A5069286054 @default.
- W4386860718 hasAuthorship W4386860718A5070686675 @default.
- W4386860718 hasAuthorship W4386860718A5072852508 @default.
- W4386860718 hasAuthorship W4386860718A5072964829 @default.
- W4386860718 hasConcept C121332964 @default.
- W4386860718 hasConcept C127413603 @default.
- W4386860718 hasConcept C149635348 @default.
- W4386860718 hasConcept C150594956 @default.
- W4386860718 hasConcept C159985019 @default.
- W4386860718 hasConcept C171250308 @default.
- W4386860718 hasConcept C192562407 @default.
- W4386860718 hasConcept C198394728 @default.
- W4386860718 hasConcept C198490522 @default.
- W4386860718 hasConcept C204366326 @default.
- W4386860718 hasConcept C21200559 @default.
- W4386860718 hasConcept C24326235 @default.
- W4386860718 hasConcept C24890656 @default.
- W4386860718 hasConcept C2777872592 @default.
- W4386860718 hasConcept C41008148 @default.
- W4386860718 hasConcept C41325743 @default.
- W4386860718 hasConcept C78519656 @default.
- W4386860718 hasConceptScore W4386860718C121332964 @default.