Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386860723> ?p ?o ?g. }
- W4386860723 endingPage "129141" @default.
- W4386860723 startingPage "129141" @default.
- W4386860723 abstract "Faced with the growing renewable energy requirements, there is increased interest in cross-region of large-scale renewable energy market, which provides an alternative path for building sustainable power systems. Critically, the development of a renewable energy-dominated electricity market is an important way to achieve global climate goals and energy conversion. Despite improved achievement of electricity demand response (EDR) market, only limited development in the coordination capacity and development scale of EDR are dominated by renewable energy. Moreover, the normal operation and work efficiency of the system is greatly affected due to data transmission errors and other human factors. Thus, it is of great importance for the State Grid to accurately identify the data sources and realize the interactive development of cross-region power systems. This paper presents a new cross-region (province) electricity demand response (CR-EDR) model in China for large-scale renewable energy participating in EDR market. This model is applied to three provinces in China based on renewable energy, and fully consider how wind power is integrated with EDR in terms of operation, grid connection and optimization. Presently, China is in the initial stage of development, and the identification of data anomalies is inevitable for the CR-EDR. To solve this problem, a novel machine learning (ML)-based approach is proposed for effective identification of EDR. By calculating wind power output and customers’ EDR results, reliable feature sequences can be obtained. Finally, all the feature sequences are uploaded to cross-region system operators (CR-SO) for classification and identification by ML. In the case studies and discussions, we integrated all feature sequences to CR-SO for identification and present a novel process approach to implement EDR, the random forest (RF) enables 100% accuracy for training set and 99.7685% for testing set with small training samples. Compared with RF, support vector machine only achieves 79.1667% for testing set with small training samples. With accurate RF identification results, the stable operation capability and management level of the system can be effectively improved. The proposed methodology creates a new provincial perspective of China and the establishment of CR-EDR, which provides a theoretical and methodological guidance for all countries and regions to develop CR-EDR." @default.
- W4386860723 created "2023-09-20" @default.
- W4386860723 creator A5021120517 @default.
- W4386860723 creator A5038370496 @default.
- W4386860723 creator A5053599889 @default.
- W4386860723 date "2023-11-01" @default.
- W4386860723 modified "2023-10-06" @default.
- W4386860723 title "1A new machine learning-based approach for cross-region coupled wind-storage integrated systems identification considering electricity demand response and data integration: A new provincial perspective of China" @default.
- W4386860723 cites W2009465763 @default.
- W4386860723 cites W2021944611 @default.
- W4386860723 cites W2074513827 @default.
- W4386860723 cites W2799686667 @default.
- W4386860723 cites W2905720046 @default.
- W4386860723 cites W2910279921 @default.
- W4386860723 cites W2995621191 @default.
- W4386860723 cites W3001161140 @default.
- W4386860723 cites W3014231297 @default.
- W4386860723 cites W3024525656 @default.
- W4386860723 cites W3025729908 @default.
- W4386860723 cites W3088707425 @default.
- W4386860723 cites W3088958784 @default.
- W4386860723 cites W3121097856 @default.
- W4386860723 cites W3125840149 @default.
- W4386860723 cites W3126441362 @default.
- W4386860723 cites W3128287409 @default.
- W4386860723 cites W3129823469 @default.
- W4386860723 cites W3130996728 @default.
- W4386860723 cites W3135294871 @default.
- W4386860723 cites W3135437774 @default.
- W4386860723 cites W3139395991 @default.
- W4386860723 cites W3158165029 @default.
- W4386860723 cites W3167354048 @default.
- W4386860723 cites W3173324334 @default.
- W4386860723 cites W3193704620 @default.
- W4386860723 cites W3194350340 @default.
- W4386860723 cites W3196068745 @default.
- W4386860723 cites W3196119092 @default.
- W4386860723 cites W3196270243 @default.
- W4386860723 cites W3196636665 @default.
- W4386860723 cites W3200790647 @default.
- W4386860723 cites W3207948154 @default.
- W4386860723 cites W3210122078 @default.
- W4386860723 cites W4200212447 @default.
- W4386860723 cites W4205626251 @default.
- W4386860723 cites W4205784232 @default.
- W4386860723 cites W4206014852 @default.
- W4386860723 cites W4206415146 @default.
- W4386860723 cites W4213047954 @default.
- W4386860723 cites W4213302937 @default.
- W4386860723 cites W4220656736 @default.
- W4386860723 cites W4221115832 @default.
- W4386860723 cites W4283644288 @default.
- W4386860723 cites W4285201538 @default.
- W4386860723 cites W4294811307 @default.
- W4386860723 cites W4295308158 @default.
- W4386860723 cites W4297992027 @default.
- W4386860723 cites W4306772228 @default.
- W4386860723 cites W4307405527 @default.
- W4386860723 cites W4308906984 @default.
- W4386860723 cites W4310074165 @default.
- W4386860723 cites W4318766781 @default.
- W4386860723 cites W4319299604 @default.
- W4386860723 cites W4327629578 @default.
- W4386860723 doi "https://doi.org/10.1016/j.energy.2023.129141" @default.
- W4386860723 hasPublicationYear "2023" @default.
- W4386860723 type Work @default.
- W4386860723 citedByCount "0" @default.
- W4386860723 crossrefType "journal-article" @default.
- W4386860723 hasAuthorship W4386860723A5021120517 @default.
- W4386860723 hasAuthorship W4386860723A5038370496 @default.
- W4386860723 hasAuthorship W4386860723A5053599889 @default.
- W4386860723 hasConcept C116834253 @default.
- W4386860723 hasConcept C119599485 @default.
- W4386860723 hasConcept C127413603 @default.
- W4386860723 hasConcept C13280743 @default.
- W4386860723 hasConcept C134560507 @default.
- W4386860723 hasConcept C162324750 @default.
- W4386860723 hasConcept C187691185 @default.
- W4386860723 hasConcept C188573790 @default.
- W4386860723 hasConcept C205649164 @default.
- W4386860723 hasConcept C206658404 @default.
- W4386860723 hasConcept C2779438525 @default.
- W4386860723 hasConcept C2780685028 @default.
- W4386860723 hasConcept C41008148 @default.
- W4386860723 hasConcept C59822182 @default.
- W4386860723 hasConcept C78600449 @default.
- W4386860723 hasConcept C86803240 @default.
- W4386860723 hasConceptScore W4386860723C116834253 @default.
- W4386860723 hasConceptScore W4386860723C119599485 @default.
- W4386860723 hasConceptScore W4386860723C127413603 @default.
- W4386860723 hasConceptScore W4386860723C13280743 @default.
- W4386860723 hasConceptScore W4386860723C134560507 @default.
- W4386860723 hasConceptScore W4386860723C162324750 @default.
- W4386860723 hasConceptScore W4386860723C187691185 @default.
- W4386860723 hasConceptScore W4386860723C188573790 @default.
- W4386860723 hasConceptScore W4386860723C205649164 @default.
- W4386860723 hasConceptScore W4386860723C206658404 @default.
- W4386860723 hasConceptScore W4386860723C2779438525 @default.