Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386860890> ?p ?o ?g. }
- W4386860890 abstract "Introduction In this study, we explore the potential benefits of integrating natural cognitive systems (medical professionals' expertise) and artificial cognitive systems (deep learning models) in the realms of medical image analysis and sports injury prediction. We focus on analyzing medical images of athletes to gain valuable insights into their health status. Methods To synergize the strengths of both natural and artificial cognitive systems, we employ the ResNet50-BiGRU model and introduce an attention mechanism. Our goal is to enhance the performance of medical image feature extraction and motion injury prediction. This integrated approach aims to achieve precise identification of anomalies in medical images, particularly related to muscle or bone damage. Results We evaluate the effectiveness of our method on four medical image datasets, specifically pertaining to skeletal and muscle injuries. We use performance indicators such as Peak Signal-to-Noise Ratio and Structural Similarity Index, confirming the robustness of our approach in sports injury analysis. Discussion Our research contributes significantly by providing an effective deep learning-driven method that harnesses both natural and artificial cognitive systems. By combining human expertise with advanced machine learning techniques, we offer a comprehensive understanding of athletes' health status. This approach holds potential implications for enhancing sports injury prevention, improving diagnostic accuracy, and tailoring personalized treatment plans for athletes, ultimately promoting better overall health and performance outcomes. Despite advancements in medical image analysis and sports injury prediction, existing systems often struggle to identify subtle anomalies and provide precise injury risk assessments, underscoring the necessity of a more integrated and comprehensive approach." @default.
- W4386860890 created "2023-09-20" @default.
- W4386860890 creator A5001922881 @default.
- W4386860890 creator A5004160642 @default.
- W4386860890 creator A5043608589 @default.
- W4386860890 creator A5055967466 @default.
- W4386860890 date "2023-09-19" @default.
- W4386860890 modified "2023-10-16" @default.
- W4386860890 title "Leveraging natural cognitive systems in conjunction with ResNet50-BiGRU model and attention mechanism for enhanced medical image analysis and sports injury prediction" @default.
- W4386860890 cites W2346062110 @default.
- W4386860890 cites W2909645133 @default.
- W4386860890 cites W2919234133 @default.
- W4386860890 cites W2968402026 @default.
- W4386860890 cites W2979723138 @default.
- W4386860890 cites W2980277939 @default.
- W4386860890 cites W2986815055 @default.
- W4386860890 cites W2990961119 @default.
- W4386860890 cites W3006109402 @default.
- W4386860890 cites W3009712583 @default.
- W4386860890 cites W3012303644 @default.
- W4386860890 cites W3012521722 @default.
- W4386860890 cites W3021182036 @default.
- W4386860890 cites W3038699862 @default.
- W4386860890 cites W3080406710 @default.
- W4386860890 cites W3087099853 @default.
- W4386860890 cites W3096190283 @default.
- W4386860890 cites W3096947210 @default.
- W4386860890 cites W3105153358 @default.
- W4386860890 cites W3109469672 @default.
- W4386860890 cites W3121383163 @default.
- W4386860890 cites W3135096391 @default.
- W4386860890 cites W3173590174 @default.
- W4386860890 cites W3181234600 @default.
- W4386860890 cites W4210598198 @default.
- W4386860890 cites W4213019189 @default.
- W4386860890 cites W4220762983 @default.
- W4386860890 cites W4220769304 @default.
- W4386860890 cites W4280615738 @default.
- W4386860890 cites W4285079306 @default.
- W4386860890 cites W4315630867 @default.
- W4386860890 doi "https://doi.org/10.3389/fnins.2023.1273931" @default.
- W4386860890 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37795185" @default.
- W4386860890 hasPublicationYear "2023" @default.
- W4386860890 type Work @default.
- W4386860890 citedByCount "0" @default.
- W4386860890 crossrefType "journal-article" @default.
- W4386860890 hasAuthorship W4386860890A5001922881 @default.
- W4386860890 hasAuthorship W4386860890A5004160642 @default.
- W4386860890 hasAuthorship W4386860890A5043608589 @default.
- W4386860890 hasAuthorship W4386860890A5055967466 @default.
- W4386860890 hasBestOaLocation W43868608901 @default.
- W4386860890 hasConcept C104317684 @default.
- W4386860890 hasConcept C108583219 @default.
- W4386860890 hasConcept C111472728 @default.
- W4386860890 hasConcept C118552586 @default.
- W4386860890 hasConcept C119857082 @default.
- W4386860890 hasConcept C138885662 @default.
- W4386860890 hasConcept C154945302 @default.
- W4386860890 hasConcept C169900460 @default.
- W4386860890 hasConcept C185592680 @default.
- W4386860890 hasConcept C1862650 @default.
- W4386860890 hasConcept C2781054738 @default.
- W4386860890 hasConcept C41008148 @default.
- W4386860890 hasConcept C55493867 @default.
- W4386860890 hasConcept C63479239 @default.
- W4386860890 hasConcept C71924100 @default.
- W4386860890 hasConcept C89611455 @default.
- W4386860890 hasConceptScore W4386860890C104317684 @default.
- W4386860890 hasConceptScore W4386860890C108583219 @default.
- W4386860890 hasConceptScore W4386860890C111472728 @default.
- W4386860890 hasConceptScore W4386860890C118552586 @default.
- W4386860890 hasConceptScore W4386860890C119857082 @default.
- W4386860890 hasConceptScore W4386860890C138885662 @default.
- W4386860890 hasConceptScore W4386860890C154945302 @default.
- W4386860890 hasConceptScore W4386860890C169900460 @default.
- W4386860890 hasConceptScore W4386860890C185592680 @default.
- W4386860890 hasConceptScore W4386860890C1862650 @default.
- W4386860890 hasConceptScore W4386860890C2781054738 @default.
- W4386860890 hasConceptScore W4386860890C41008148 @default.
- W4386860890 hasConceptScore W4386860890C55493867 @default.
- W4386860890 hasConceptScore W4386860890C63479239 @default.
- W4386860890 hasConceptScore W4386860890C71924100 @default.
- W4386860890 hasConceptScore W4386860890C89611455 @default.
- W4386860890 hasLocation W43868608901 @default.
- W4386860890 hasLocation W43868608902 @default.
- W4386860890 hasOpenAccess W4386860890 @default.
- W4386860890 hasPrimaryLocation W43868608901 @default.
- W4386860890 hasRelatedWork W1597848696 @default.
- W4386860890 hasRelatedWork W201407858 @default.
- W4386860890 hasRelatedWork W2351750670 @default.
- W4386860890 hasRelatedWork W2366356402 @default.
- W4386860890 hasRelatedWork W2382213751 @default.
- W4386860890 hasRelatedWork W2382997850 @default.
- W4386860890 hasRelatedWork W2390968135 @default.
- W4386860890 hasRelatedWork W2803691927 @default.
- W4386860890 hasRelatedWork W2891153828 @default.
- W4386860890 hasRelatedWork W4375867731 @default.
- W4386860890 hasVolume "17" @default.
- W4386860890 isParatext "false" @default.
- W4386860890 isRetracted "false" @default.