Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386861120> ?p ?o ?g. }
- W4386861120 abstract "The increasing human population and variable weather conditions, due to climate change, pose a threat to the world's food security. To improve global food security, we need to provide breeders with tools to develop crop cultivars that are more resilient to extreme weather conditions and provide growers with tools to more effectively manage biotic and abiotic stresses in their crops. Plant phenotyping, the measurement of a plant's structural and functional characteristics, has the potential to inform, improve and accelerate both breeders' selections and growers' management decisions. To improve the speed, reliability and scale of plant phenotyping procedures, many researchers have adopted deep learning methods to estimate phenotypic information from images of plants and crops. Despite the successful results of these image-based phenotyping studies, the representations learned by deep learning models remain difficult to interpret, understand, and explain. For this reason, deep learning models are still considered to be black boxes. Explainable AI (XAI) is a promising approach for opening the deep learning model's black box and providing plant scientists with image-based phenotypic information that is interpretable and trustworthy. Although various fields of study have adopted XAI to advance their understanding of deep learning models, it has yet to be well-studied in the context of plant phenotyping research. In this review article, we reviewed existing XAI studies in plant shoot phenotyping, as well as related domains, to help plant researchers understand the benefits of XAI and make it easier for them to integrate XAI into their future studies. An elucidation of the representations within a deep learning model can help researchers explain the model's decisions, relate the features detected by the model to the underlying plant physiology, and enhance the trustworthiness of image-based phenotypic information used in food production systems." @default.
- W4386861120 created "2023-09-20" @default.
- W4386861120 creator A5003790536 @default.
- W4386861120 creator A5013577051 @default.
- W4386861120 creator A5015544517 @default.
- W4386861120 creator A5042682943 @default.
- W4386861120 creator A5073400141 @default.
- W4386861120 date "2023-09-19" @default.
- W4386861120 modified "2023-10-16" @default.
- W4386861120 title "Explainable deep learning in plant phenotyping" @default.
- W4386861120 cites W1787224781 @default.
- W4386861120 cites W1967710271 @default.
- W4386861120 cites W1978331315 @default.
- W4386861120 cites W1996796871 @default.
- W4386861120 cites W1998686312 @default.
- W4386861120 cites W2007044705 @default.
- W4386861120 cites W2007339694 @default.
- W4386861120 cites W2016050712 @default.
- W4386861120 cites W2037227137 @default.
- W4386861120 cites W2046788142 @default.
- W4386861120 cites W2047160930 @default.
- W4386861120 cites W2048737604 @default.
- W4386861120 cites W2056181169 @default.
- W4386861120 cites W2068470708 @default.
- W4386861120 cites W2078873637 @default.
- W4386861120 cites W2085925674 @default.
- W4386861120 cites W2093319611 @default.
- W4386861120 cites W2108598243 @default.
- W4386861120 cites W2115733720 @default.
- W4386861120 cites W2115799070 @default.
- W4386861120 cites W2117539524 @default.
- W4386861120 cites W2118022153 @default.
- W4386861120 cites W2121148108 @default.
- W4386861120 cites W2139364173 @default.
- W4386861120 cites W2147800946 @default.
- W4386861120 cites W2148001258 @default.
- W4386861120 cites W2148333466 @default.
- W4386861120 cites W2240067561 @default.
- W4386861120 cites W2343061342 @default.
- W4386861120 cites W2470803522 @default.
- W4386861120 cites W2473156356 @default.
- W4386861120 cites W2505399031 @default.
- W4386861120 cites W2561412020 @default.
- W4386861120 cites W2587299461 @default.
- W4386861120 cites W2587466508 @default.
- W4386861120 cites W2618530766 @default.
- W4386861120 cites W2730129132 @default.
- W4386861120 cites W2733608569 @default.
- W4386861120 cites W2734511492 @default.
- W4386861120 cites W2738975713 @default.
- W4386861120 cites W2765793020 @default.
- W4386861120 cites W2788403449 @default.
- W4386861120 cites W2790808809 @default.
- W4386861120 cites W2792484502 @default.
- W4386861120 cites W2793323341 @default.
- W4386861120 cites W2799437918 @default.
- W4386861120 cites W2802093198 @default.
- W4386861120 cites W2883418202 @default.
- W4386861120 cites W2884877436 @default.
- W4386861120 cites W2885696131 @default.
- W4386861120 cites W2886555888 @default.
- W4386861120 cites W2891503716 @default.
- W4386861120 cites W2897179582 @default.
- W4386861120 cites W2899128648 @default.
- W4386861120 cites W2905307056 @default.
- W4386861120 cites W2905810301 @default.
- W4386861120 cites W2917901091 @default.
- W4386861120 cites W2940118123 @default.
- W4386861120 cites W2944419408 @default.
- W4386861120 cites W2947521956 @default.
- W4386861120 cites W2949036243 @default.
- W4386861120 cites W2950913754 @default.
- W4386861120 cites W2952651429 @default.
- W4386861120 cites W2953328922 @default.
- W4386861120 cites W2953907326 @default.
- W4386861120 cites W2958089299 @default.
- W4386861120 cites W2962772482 @default.
- W4386861120 cites W2962843949 @default.
- W4386861120 cites W2963095307 @default.
- W4386861120 cites W2963399068 @default.
- W4386861120 cites W2963847595 @default.
- W4386861120 cites W2963881378 @default.
- W4386861120 cites W2964178496 @default.
- W4386861120 cites W2964248288 @default.
- W4386861120 cites W2967849452 @default.
- W4386861120 cites W2968032715 @default.
- W4386861120 cites W2968688706 @default.
- W4386861120 cites W2969933026 @default.
- W4386861120 cites W2971359876 @default.
- W4386861120 cites W2971418534 @default.
- W4386861120 cites W2972441196 @default.
- W4386861120 cites W2979200397 @default.
- W4386861120 cites W2981731882 @default.
- W4386861120 cites W2981962582 @default.
- W4386861120 cites W2988952749 @default.
- W4386861120 cites W2991448601 @default.
- W4386861120 cites W2996289226 @default.
- W4386861120 cites W3000120900 @default.
- W4386861120 cites W3000965188 @default.
- W4386861120 cites W3002497963 @default.