Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386863309> ?p ?o ?g. }
- W4386863309 abstract "Abstract Bioconvection in non‐Newtonian nanofluids has a wide range of contemporary applications in biotech, biomechanics, microbiology, computational biology, medical science, etc. Considering the Casson fluid model and inclined stretching geometry a mathematical model is developed to investigate the influence of chemical reactions on bioconvection characteristics of self‐propelled microbes in a non‐Newtonian nanofluid. Nanoparticles that can be dissolved in the blood (base fluid) include titanium oxide () and aluminium oxide (). The impacts of heat generation, magnetic field, and dissipation of viscosity are also included. To simplify the governing system of partial differential equations (PDEs), boundary layer assumptions are used. By using the proper transformations, the governing PDEs and the boundary conditions that correspond with them are further changed to a dimensionless form. Utilizing a local non‐similarity technique up to the second degree of truncation in conjunction with MATLAB's (bvp4c) built‐in finite difference code, the results of the altered model are gathered. Additionally, after achieving good alignment between calculated findings and published results, the influence of changing factors on the flow of fluids and heat transfer features of the envisioned flow problems is shown and examined in graphical configuration. Tables are designed to establish numerical variants of the drag coefficient and Nusselt number. The Outcome of this study is to highlight the important role that chemical reactions play in the bioconvection of Casson nanofluids, and how manipulating the chemical reaction parameter can impact the transport and heat/mass transfer properties of the fluid. It is noted that increasing the chemical reaction parameter leads to a fall in the concentration profile of the bioconvection Casson nanofluid. Enhancing the Casson fluid parameter enhances the velocity and temperature profile. When the Peclet number is altered, the propagation of microorganisms is constrained. Moreover, it was observed that the density of motile microorganisms increased as the bioconvective Lewis numbers became higher. The coefficient of friction on the inclined stretched surface is increased significantly by the porosity parameter and Lorentz forces, as they act as amplifiers." @default.
- W4386863309 created "2023-09-20" @default.
- W4386863309 creator A5018199768 @default.
- W4386863309 creator A5076489757 @default.
- W4386863309 creator A5084338960 @default.
- W4386863309 date "2023-09-18" @default.
- W4386863309 modified "2023-09-27" @default.
- W4386863309 title "Non‐similar analysis of chemically reactive bioconvective Casson nanofluid flow over an inclined stretching surface" @default.
- W4386863309 cites W1990763693 @default.
- W4386863309 cites W2025597570 @default.
- W4386863309 cites W2041029075 @default.
- W4386863309 cites W2067627643 @default.
- W4386863309 cites W2081744149 @default.
- W4386863309 cites W2093717036 @default.
- W4386863309 cites W2195376287 @default.
- W4386863309 cites W2510696782 @default.
- W4386863309 cites W2527974663 @default.
- W4386863309 cites W2778066931 @default.
- W4386863309 cites W2790182199 @default.
- W4386863309 cites W2809381387 @default.
- W4386863309 cites W2956066681 @default.
- W4386863309 cites W2971798579 @default.
- W4386863309 cites W2976795463 @default.
- W4386863309 cites W3030800093 @default.
- W4386863309 cites W3033077890 @default.
- W4386863309 cites W3038313432 @default.
- W4386863309 cites W3045574221 @default.
- W4386863309 cites W3098498379 @default.
- W4386863309 cites W3128035955 @default.
- W4386863309 cites W3128060155 @default.
- W4386863309 cites W3128331109 @default.
- W4386863309 cites W3131557950 @default.
- W4386863309 cites W3161472847 @default.
- W4386863309 cites W3177618203 @default.
- W4386863309 cites W3178513636 @default.
- W4386863309 cites W3184987455 @default.
- W4386863309 cites W3196097209 @default.
- W4386863309 cites W3208865013 @default.
- W4386863309 cites W3214157439 @default.
- W4386863309 cites W4200517655 @default.
- W4386863309 cites W4206010134 @default.
- W4386863309 cites W4211172774 @default.
- W4386863309 cites W4213446226 @default.
- W4386863309 cites W4214745092 @default.
- W4386863309 cites W4255664195 @default.
- W4386863309 cites W4281704032 @default.
- W4386863309 cites W4282036861 @default.
- W4386863309 cites W4308559683 @default.
- W4386863309 cites W4309333343 @default.
- W4386863309 cites W4311697148 @default.
- W4386863309 cites W4323305912 @default.
- W4386863309 doi "https://doi.org/10.1002/zamm.202300128" @default.
- W4386863309 hasPublicationYear "2023" @default.
- W4386863309 type Work @default.
- W4386863309 citedByCount "0" @default.
- W4386863309 crossrefType "journal-article" @default.
- W4386863309 hasAuthorship W4386863309A5018199768 @default.
- W4386863309 hasAuthorship W4386863309A5076489757 @default.
- W4386863309 hasAuthorship W4386863309A5084338960 @default.
- W4386863309 hasConcept C121332964 @default.
- W4386863309 hasConcept C127172972 @default.
- W4386863309 hasConcept C130230704 @default.
- W4386863309 hasConcept C182310444 @default.
- W4386863309 hasConcept C182748727 @default.
- W4386863309 hasConcept C192562407 @default.
- W4386863309 hasConcept C196558001 @default.
- W4386863309 hasConcept C21946209 @default.
- W4386863309 hasConcept C294558 @default.
- W4386863309 hasConcept C38349280 @default.
- W4386863309 hasConcept C50517652 @default.
- W4386863309 hasConcept C51038369 @default.
- W4386863309 hasConcept C57879066 @default.
- W4386863309 hasConcept C62520636 @default.
- W4386863309 hasConcept C90278072 @default.
- W4386863309 hasConcept C97355855 @default.
- W4386863309 hasConceptScore W4386863309C121332964 @default.
- W4386863309 hasConceptScore W4386863309C127172972 @default.
- W4386863309 hasConceptScore W4386863309C130230704 @default.
- W4386863309 hasConceptScore W4386863309C182310444 @default.
- W4386863309 hasConceptScore W4386863309C182748727 @default.
- W4386863309 hasConceptScore W4386863309C192562407 @default.
- W4386863309 hasConceptScore W4386863309C196558001 @default.
- W4386863309 hasConceptScore W4386863309C21946209 @default.
- W4386863309 hasConceptScore W4386863309C294558 @default.
- W4386863309 hasConceptScore W4386863309C38349280 @default.
- W4386863309 hasConceptScore W4386863309C50517652 @default.
- W4386863309 hasConceptScore W4386863309C51038369 @default.
- W4386863309 hasConceptScore W4386863309C57879066 @default.
- W4386863309 hasConceptScore W4386863309C62520636 @default.
- W4386863309 hasConceptScore W4386863309C90278072 @default.
- W4386863309 hasConceptScore W4386863309C97355855 @default.
- W4386863309 hasLocation W43868633091 @default.
- W4386863309 hasOpenAccess W4386863309 @default.
- W4386863309 hasPrimaryLocation W43868633091 @default.
- W4386863309 hasRelatedWork W2074924307 @default.
- W4386863309 hasRelatedWork W2367221189 @default.
- W4386863309 hasRelatedWork W2953230860 @default.
- W4386863309 hasRelatedWork W2981367839 @default.
- W4386863309 hasRelatedWork W3049523033 @default.
- W4386863309 hasRelatedWork W3088928614 @default.