Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386865650> ?p ?o ?g. }
- W4386865650 abstract "Hepatic in vitro models that accurately replicate phenotypes and functionality of the human liver are needed for applications in toxicology, pharmacology and biomedicine. Notably, it has become clear that liver function can only be sustained in 3D culture systems at physiologically relevant cell densities. Additionally, drug metabolism and drug-induced cellular toxicity often follow distinct spatial micropatterns of the metabolic zones in the liver acinus, calling for models that capture this zonation. We demonstrate the manufacture of accurate liver microphysiological systems (MPS) via engineering of 3D stereolithography printed hydrogel chips with arrays of diffusion open synthetic vasculature channels at spacings approaching in vivo capillary distances. Chip designs are compatible with seeding of cell suspensions or preformed liver cell spheroids. Importantly, primary human hepatocytes (PHH) and hiPSC-derived hepatocyte-like cells remain viable, exhibit improved molecular phenotypes compared to isogenic monolayer and static spheroid cultures and form interconnected tissue structures over the course of multiple weeks in perfused culture. 3D optical oxygen mapping of embedded sensor beads shows that the liver MPS recapitulates oxygen gradients found in the acini, which translates into zone-specific acet-ami-no-phen toxicity patterns. Zonation, here naturally generated by high cell densities and associated oxygen and nutrient utilization along the flow path, is also documented by spatial proteomics showing increased concentration of periportal- versus perivenous-associated proteins at the inlet region and vice versa at the outlet region. The presented microperfused liver MPS provides a promising platform for the mesoscale culture of human liver cells at phenotypically relevant densities and oxygen exposures. STATEMENT OF SIGNIFICANCE: A full 3D tissue culture platform is presented, enabled by massively parallel arrays of high-resolution 3D printed microperfusion hydrogel channels that functionally mimics tissue vasculature. The platform supports long-term culture of liver models with dimensions of several millimeters at physiologically relevant cell densities, which is difficult to achieve with other methods. Human liver models are generated from seeded primary human hepatocytes (PHHs) cultured for two weeks, and from seeded spheroids of hiPSC-derived human liver-like cells cultured for two months. Both model types show improved functionality over state-of-the-art 3D spheroid suspensions cultured in parallel. The platform can generate physiologically relevant oxygen gradients driven by consumption rather than supply, which was validated by visualization of embedded oxygen-sensitive microbeads, which is exploited to demonstrate zonation-specific toxicity in PHH liver models." @default.
- W4386865650 created "2023-09-20" @default.
- W4386865650 creator A5001151459 @default.
- W4386865650 creator A5017803372 @default.
- W4386865650 creator A5018382310 @default.
- W4386865650 creator A5034156038 @default.
- W4386865650 creator A5047868847 @default.
- W4386865650 creator A5053109650 @default.
- W4386865650 creator A5053389535 @default.
- W4386865650 creator A5056482019 @default.
- W4386865650 creator A5058195853 @default.
- W4386865650 creator A5060163981 @default.
- W4386865650 creator A5064577333 @default.
- W4386865650 date "2023-09-01" @default.
- W4386865650 modified "2023-10-09" @default.
- W4386865650 title "3D microperfusion of mesoscale human microphysiological liver models improves functionality and recapitulates hepatic zonation" @default.
- W4386865650 cites W1601681275 @default.
- W4386865650 cites W1676406229 @default.
- W4386865650 cites W1973021910 @default.
- W4386865650 cites W2007000551 @default.
- W4386865650 cites W2024331970 @default.
- W4386865650 cites W2032105048 @default.
- W4386865650 cites W2064076054 @default.
- W4386865650 cites W2086343948 @default.
- W4386865650 cites W2167279371 @default.
- W4386865650 cites W2173232702 @default.
- W4386865650 cites W2232645088 @default.
- W4386865650 cites W2252267431 @default.
- W4386865650 cites W2321561488 @default.
- W4386865650 cites W2345415005 @default.
- W4386865650 cites W2518335133 @default.
- W4386865650 cites W2575236525 @default.
- W4386865650 cites W2582439362 @default.
- W4386865650 cites W2592130743 @default.
- W4386865650 cites W2606463168 @default.
- W4386865650 cites W2610183145 @default.
- W4386865650 cites W2767010252 @default.
- W4386865650 cites W2771920343 @default.
- W4386865650 cites W2793328348 @default.
- W4386865650 cites W2903583974 @default.
- W4386865650 cites W2917725007 @default.
- W4386865650 cites W2935769860 @default.
- W4386865650 cites W2946173685 @default.
- W4386865650 cites W2974173934 @default.
- W4386865650 cites W2974497812 @default.
- W4386865650 cites W3016862655 @default.
- W4386865650 cites W3022984442 @default.
- W4386865650 cites W3026271055 @default.
- W4386865650 cites W3033565050 @default.
- W4386865650 cites W3119677722 @default.
- W4386865650 cites W3153323717 @default.
- W4386865650 cites W3196323635 @default.
- W4386865650 cites W3202721341 @default.
- W4386865650 cites W3205691430 @default.
- W4386865650 cites W4205233365 @default.
- W4386865650 cites W4220956771 @default.
- W4386865650 cites W4290027428 @default.
- W4386865650 cites W4296371994 @default.
- W4386865650 cites W4306845387 @default.
- W4386865650 cites W4386318431 @default.
- W4386865650 doi "https://doi.org/10.1016/j.actbio.2023.09.022" @default.
- W4386865650 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37734628" @default.
- W4386865650 hasPublicationYear "2023" @default.
- W4386865650 type Work @default.
- W4386865650 citedByCount "0" @default.
- W4386865650 crossrefType "journal-article" @default.
- W4386865650 hasAuthorship W4386865650A5001151459 @default.
- W4386865650 hasAuthorship W4386865650A5017803372 @default.
- W4386865650 hasAuthorship W4386865650A5018382310 @default.
- W4386865650 hasAuthorship W4386865650A5034156038 @default.
- W4386865650 hasAuthorship W4386865650A5047868847 @default.
- W4386865650 hasAuthorship W4386865650A5053109650 @default.
- W4386865650 hasAuthorship W4386865650A5053389535 @default.
- W4386865650 hasAuthorship W4386865650A5056482019 @default.
- W4386865650 hasAuthorship W4386865650A5058195853 @default.
- W4386865650 hasAuthorship W4386865650A5060163981 @default.
- W4386865650 hasAuthorship W4386865650A5064577333 @default.
- W4386865650 hasBestOaLocation W43868656501 @default.
- W4386865650 hasConcept C12554922 @default.
- W4386865650 hasConcept C136229726 @default.
- W4386865650 hasConcept C150903083 @default.
- W4386865650 hasConcept C175369904 @default.
- W4386865650 hasConcept C185592680 @default.
- W4386865650 hasConcept C202751555 @default.
- W4386865650 hasConcept C207001950 @default.
- W4386865650 hasConcept C2776200302 @default.
- W4386865650 hasConcept C54355233 @default.
- W4386865650 hasConcept C55493867 @default.
- W4386865650 hasConcept C71924100 @default.
- W4386865650 hasConcept C81885089 @default.
- W4386865650 hasConcept C86803240 @default.
- W4386865650 hasConcept C95444343 @default.
- W4386865650 hasConceptScore W4386865650C12554922 @default.
- W4386865650 hasConceptScore W4386865650C136229726 @default.
- W4386865650 hasConceptScore W4386865650C150903083 @default.
- W4386865650 hasConceptScore W4386865650C175369904 @default.
- W4386865650 hasConceptScore W4386865650C185592680 @default.
- W4386865650 hasConceptScore W4386865650C202751555 @default.
- W4386865650 hasConceptScore W4386865650C207001950 @default.
- W4386865650 hasConceptScore W4386865650C2776200302 @default.