Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386866810> ?p ?o ?g. }
Showing items 1 to 74 of
74
with 100 items per page.
- W4386866810 endingPage "1595" @default.
- W4386866810 startingPage "1595" @default.
- W4386866810 abstract "The utilization of a proton exchange membrane fuel cell (PEMFC) as an energy provider using hydrogen as a fuel has increased drastically. The reasons are the current limitation of fossil fuel-based devices, pollutants-free, high efficiency, and zero-carbon emission. The life-cycle assessment results of this type of fuel cell have also indicated the lowest contribution to global warming, human health, and resource scarcity in comparison to other types of fuel cells. In this regard, improving the performance of PEMFC is of importance. As an important component of the PEMFC, the gas diffusion layer (GDL) transports the gas reactants to the catalyst layer with the least electrical resistance. The GDL is often made of carbon fibers and should have a surface with good electrical contact and hydrophobic properties to facilitate the water removal. Remaining water in the GDL will result in difficulties during the cold-start and enhances the degradation of this layer. It is believed that the water removal of the GDL has a direct relationship with the capillary pressure, which is strongly linked to the GDL’s microstructure and wettability. However, further investigations can be done once a comprehensive simulation model is developed to monitor the changes in the GDL liquid removal by the effective parameters. In this regard, the Focused Ion Beam-Scanning Electron Microscopy (FIB-SEM) has been used to perform three-dimensional cross-section imaging of the GDL. The GDL samples are provided by Freudenberg in which the Microporous layer (MPL) is impregnated into the GDL. The average porosity of this sample is in the range of 75% while having the in-plane gas permeability of 2.4 under a compressive stress of 1 MPa. The utilized resin for FIB-SEM imaging is a mixture of Epoxy embedding medium (diglycidyl ether of bisphenol – A) with two different hardeners DDSA (2-Dodecenylsuccinic anhydride) and MNA (Methylnadic anhydride), which will be mixed with DPM – 30 [2,4,6 – Tris(dimethylaminomethyl)phenol] as the accelerator, all provided by Sigma Aldrich. After the preparation of the resin, 0.4 gr of Cobalt (II) acetylacetonate nanoparticles (supported by Sigma Aldrich) were added to 7.14 ml of the resin to improve the contrast of the images. The samples were impregnated with the resin under vacuum to be pressurized (3 MPa) for 20 minutes, and afterward, heated in an oven at 60℃ for 12 hours. The surfaces for analyses were cut by a diamond wire, polished by abrasive plates down to 0.1 and gold coated (20nm). FIB-SEM acquisition consisted of the polishing of cross-sections with a focused ion beam (LMIS Ga + source) at 30 keV and 1 nA (Zeiss Crossbeam 540), followed by imaging with an electron beam at acceleration voltages of 1.0, 3.0 kV. Milling and imaging were performed at a working distance of 5.2 mm and stage tilt of 54°, i.e., the coincidence point of the electron and ion beams. Once the three-dimensional cross-sections of the GDL are obtained, the segmentation and reconstruction will be made to provide the needed geometry for fluid flow simulation and to calculate the microstructural properties. Fig. 1 shows the generated structure of the GDL after the segmentation and reconstruction of the cross-section images. The geometry will be then used to characterize the effective parameters of the thermal/water management of the PEMFC. This study can also be a valid reference for future computational fluid dynamic analyses in the GDL using the numerical modeling with the conservative equations or the Lattice Boltzmann modeling (LBM) with the kinetic and particle distribution equations. Keywords : Proton exchange membrane fuel cell (PEMFC); Gas Diffusion Layer (GDL); Focused Ion Beam- Scanning Electron Microscopy (FIB-SEM); Three-dimensional simulation; Lattice Boltzmann method (LBM) Figure 1" @default.
- W4386866810 created "2023-09-20" @default.
- W4386866810 creator A5002100562 @default.
- W4386866810 creator A5029716653 @default.
- W4386866810 creator A5061058621 @default.
- W4386866810 creator A5069126756 @default.
- W4386866810 creator A5080814455 @default.
- W4386866810 creator A5081244086 @default.
- W4386866810 creator A5087413665 @default.
- W4386866810 date "2023-08-28" @default.
- W4386866810 modified "2023-10-02" @default.
- W4386866810 title "Fluid Flow in the Gas Diffusion Layer Using Computational Fluid Dynamics and Microscopy Techniques" @default.
- W4386866810 doi "https://doi.org/10.1149/ma2023-01241595mtgabs" @default.
- W4386866810 hasPublicationYear "2023" @default.
- W4386866810 type Work @default.
- W4386866810 citedByCount "0" @default.
- W4386866810 crossrefType "journal-article" @default.
- W4386866810 hasAuthorship W4386866810A5002100562 @default.
- W4386866810 hasAuthorship W4386866810A5029716653 @default.
- W4386866810 hasAuthorship W4386866810A5061058621 @default.
- W4386866810 hasAuthorship W4386866810A5069126756 @default.
- W4386866810 hasAuthorship W4386866810A5080814455 @default.
- W4386866810 hasAuthorship W4386866810A5081244086 @default.
- W4386866810 hasAuthorship W4386866810A5087413665 @default.
- W4386866810 hasConcept C127413603 @default.
- W4386866810 hasConcept C132319479 @default.
- W4386866810 hasConcept C134514944 @default.
- W4386866810 hasConcept C159985019 @default.
- W4386866810 hasConcept C161790260 @default.
- W4386866810 hasConcept C178790620 @default.
- W4386866810 hasConcept C185592680 @default.
- W4386866810 hasConcept C192562407 @default.
- W4386866810 hasConcept C196806460 @default.
- W4386866810 hasConcept C26771246 @default.
- W4386866810 hasConcept C42360764 @default.
- W4386866810 hasConcept C512968161 @default.
- W4386866810 hasConcept C6556556 @default.
- W4386866810 hasConcept C6648577 @default.
- W4386866810 hasConcept C86381522 @default.
- W4386866810 hasConceptScore W4386866810C127413603 @default.
- W4386866810 hasConceptScore W4386866810C132319479 @default.
- W4386866810 hasConceptScore W4386866810C134514944 @default.
- W4386866810 hasConceptScore W4386866810C159985019 @default.
- W4386866810 hasConceptScore W4386866810C161790260 @default.
- W4386866810 hasConceptScore W4386866810C178790620 @default.
- W4386866810 hasConceptScore W4386866810C185592680 @default.
- W4386866810 hasConceptScore W4386866810C192562407 @default.
- W4386866810 hasConceptScore W4386866810C196806460 @default.
- W4386866810 hasConceptScore W4386866810C26771246 @default.
- W4386866810 hasConceptScore W4386866810C42360764 @default.
- W4386866810 hasConceptScore W4386866810C512968161 @default.
- W4386866810 hasConceptScore W4386866810C6556556 @default.
- W4386866810 hasConceptScore W4386866810C6648577 @default.
- W4386866810 hasConceptScore W4386866810C86381522 @default.
- W4386866810 hasIssue "24" @default.
- W4386866810 hasLocation W43868668101 @default.
- W4386866810 hasOpenAccess W4386866810 @default.
- W4386866810 hasPrimaryLocation W43868668101 @default.
- W4386866810 hasRelatedWork W1976774633 @default.
- W4386866810 hasRelatedWork W1987161778 @default.
- W4386866810 hasRelatedWork W2023784679 @default.
- W4386866810 hasRelatedWork W2043294979 @default.
- W4386866810 hasRelatedWork W2213924279 @default.
- W4386866810 hasRelatedWork W2363153731 @default.
- W4386866810 hasRelatedWork W2387616028 @default.
- W4386866810 hasRelatedWork W3011332232 @default.
- W4386866810 hasRelatedWork W4247602312 @default.
- W4386866810 hasRelatedWork W4280580378 @default.
- W4386866810 hasVolume "MA2023-01" @default.
- W4386866810 isParatext "false" @default.
- W4386866810 isRetracted "false" @default.
- W4386866810 workType "article" @default.