Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386867413> ?p ?o ?g. }
Showing items 1 to 56 of
56
with 100 items per page.
- W4386867413 endingPage "2023ss0116" @default.
- W4386867413 startingPage "2023ss0116" @default.
- W4386867413 abstract "A person's gender must be correctly identified for many applications, such as tailored services, social sciences, and human-computer interaction, to function properly. Traditional gender identification techniques mostly depend on physical traits, but new developments in psychological biometrics provide interesting alternatives. Over the last several years, several access control systems have included biometric security technologies to increase security. The handwritten signature is the psychological biometric characteristic that is most often used to validate daily documents like letters, contracts, wills, MOUs, etc. This study proposes an innovative Deep Learning (DL) approach to identify a person's gender from an image of their handwritten signature. The fusion of statistical and textural information taken from the trademark photos serves as the foundation for the proposed work. The texture is represented by the Pyramid Histogram of Oriented Gradients (PHOG) features. A novel sequence labelling multidimensional recurrent neural network (SLMRNN) is employed to classify the writer's gender. Extensive experiments are carried out on the gathered dataset to assess the performance of the suggested technique. The efficacy of the fusion features and DL models for gender recognition is evaluated using a variety of measures, including accuracy, precision, recall, and F1 score. To evaluate the suggested approach against existing procedures and emphasize its advantages, if any, comparative assessments are also carried out. The findings show that, in comparison to conventional approaches, the combination of behavioral biometric variables with cutting-edge DL algorithms greatly enhances gender identification accuracy. The suggested approach is anticipated to be beneficial in the development of effective computer vision tools for forensic analysis and authentication of papers with handwritten signatures." @default.
- W4386867413 created "2023-09-20" @default.
- W4386867413 creator A5014049658 @default.
- W4386867413 creator A5034662214 @default.
- W4386867413 creator A5066761391 @default.
- W4386867413 date "2023-08-10" @default.
- W4386867413 modified "2023-09-27" @default.
- W4386867413 title "Analysis of psychological biometric data for gender identification using fusion features and deep learning" @default.
- W4386867413 doi "https://doi.org/10.31893/multiscience.2023ss0116" @default.
- W4386867413 hasPublicationYear "2023" @default.
- W4386867413 type Work @default.
- W4386867413 citedByCount "0" @default.
- W4386867413 crossrefType "journal-article" @default.
- W4386867413 hasAuthorship W4386867413A5014049658 @default.
- W4386867413 hasAuthorship W4386867413A5034662214 @default.
- W4386867413 hasAuthorship W4386867413A5066761391 @default.
- W4386867413 hasBestOaLocation W43868674131 @default.
- W4386867413 hasConcept C115961682 @default.
- W4386867413 hasConcept C116834253 @default.
- W4386867413 hasConcept C119857082 @default.
- W4386867413 hasConcept C153180895 @default.
- W4386867413 hasConcept C154945302 @default.
- W4386867413 hasConcept C184297639 @default.
- W4386867413 hasConcept C41008148 @default.
- W4386867413 hasConcept C53533937 @default.
- W4386867413 hasConcept C59822182 @default.
- W4386867413 hasConcept C86803240 @default.
- W4386867413 hasConceptScore W4386867413C115961682 @default.
- W4386867413 hasConceptScore W4386867413C116834253 @default.
- W4386867413 hasConceptScore W4386867413C119857082 @default.
- W4386867413 hasConceptScore W4386867413C153180895 @default.
- W4386867413 hasConceptScore W4386867413C154945302 @default.
- W4386867413 hasConceptScore W4386867413C184297639 @default.
- W4386867413 hasConceptScore W4386867413C41008148 @default.
- W4386867413 hasConceptScore W4386867413C53533937 @default.
- W4386867413 hasConceptScore W4386867413C59822182 @default.
- W4386867413 hasConceptScore W4386867413C86803240 @default.
- W4386867413 hasLocation W43868674131 @default.
- W4386867413 hasOpenAccess W4386867413 @default.
- W4386867413 hasPrimaryLocation W43868674131 @default.
- W4386867413 hasRelatedWork W1498259939 @default.
- W4386867413 hasRelatedWork W1983610137 @default.
- W4386867413 hasRelatedWork W2040719874 @default.
- W4386867413 hasRelatedWork W2097458023 @default.
- W4386867413 hasRelatedWork W2750350980 @default.
- W4386867413 hasRelatedWork W2901148276 @default.
- W4386867413 hasRelatedWork W2990472155 @default.
- W4386867413 hasRelatedWork W3024593842 @default.
- W4386867413 hasRelatedWork W3140013985 @default.
- W4386867413 hasRelatedWork W2181817726 @default.
- W4386867413 hasVolume "5" @default.
- W4386867413 isParatext "false" @default.
- W4386867413 isRetracted "false" @default.
- W4386867413 workType "article" @default.