Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386868114> ?p ?o ?g. }
- W4386868114 endingPage "237" @default.
- W4386868114 startingPage "225" @default.
- W4386868114 abstract "Surface electromyography (EMG) has emerged as a promising clisnical decision support system, enabling the extraction of muscles' electrical activity through non-invasive devices placed on the body. This study focuses on the application of machine learning (ML) techniques to preprocess and analyze EMG signals for the detection of muscle abnormalities. Notably, state-of-the-art ML algorithms, including Support Vector Machines (SVM), k-Nearest Neighbors (KNN), Artificial Neural Networks (ANN), Random Forests (RF), and Naive Bayes (NB), have been harnessed by researchers in the biomedical sciences to achieve accurate surface EMG signal detection. Within this paper, we present a meticulously conducted systematic review, employing the PRISMA method to select relevant research papers. Various databases were thoroughly searched, and multiple pertinent studies were identified for detailed examination, weighing their respective merits and drawbacks. Our survey comprehensively elucidates the latest ML techniques used in surface EMG detection, offering valuable insights for researchers in this domain. Additionally" @default.
- W4386868114 created "2023-09-20" @default.
- W4386868114 creator A5003905050 @default.
- W4386868114 creator A5004542314 @default.
- W4386868114 creator A5009082579 @default.
- W4386868114 creator A5028944564 @default.
- W4386868114 creator A5056399539 @default.
- W4386868114 creator A5065744632 @default.
- W4386868114 creator A5081634641 @default.
- W4386868114 date "2023-06-11" @default.
- W4386868114 modified "2023-09-27" @default.
- W4386868114 title "MACHINE LEARNING TECHNIQUES APPLIED IN SURFACE EMG DETECTION- A SYSTEMATIC REVIEW" @default.
- W4386868114 cites W1971652624 @default.
- W4386868114 cites W1985931910 @default.
- W4386868114 cites W1992466719 @default.
- W4386868114 cites W2003512661 @default.
- W4386868114 cites W2089282851 @default.
- W4386868114 cites W2099019403 @default.
- W4386868114 cites W2100920718 @default.
- W4386868114 cites W2101337260 @default.
- W4386868114 cites W2103403570 @default.
- W4386868114 cites W2105413774 @default.
- W4386868114 cites W2115866273 @default.
- W4386868114 cites W2139462481 @default.
- W4386868114 cites W2152528000 @default.
- W4386868114 cites W2158728671 @default.
- W4386868114 cites W2234502898 @default.
- W4386868114 cites W2548942793 @default.
- W4386868114 cites W2762636374 @default.
- W4386868114 cites W2765837440 @default.
- W4386868114 cites W2770348256 @default.
- W4386868114 cites W2781686820 @default.
- W4386868114 cites W2781714299 @default.
- W4386868114 cites W2785722663 @default.
- W4386868114 cites W2790175409 @default.
- W4386868114 cites W2800930771 @default.
- W4386868114 cites W2882661352 @default.
- W4386868114 cites W2884391376 @default.
- W4386868114 cites W2886903801 @default.
- W4386868114 cites W2889242407 @default.
- W4386868114 cites W2890276122 @default.
- W4386868114 cites W2914883609 @default.
- W4386868114 cites W2922138935 @default.
- W4386868114 cites W2924232516 @default.
- W4386868114 cites W3008514739 @default.
- W4386868114 cites W3020587741 @default.
- W4386868114 cites W3028414831 @default.
- W4386868114 cites W3096523153 @default.
- W4386868114 cites W3167111858 @default.
- W4386868114 cites W4368376692 @default.
- W4386868114 cites W4384945651 @default.
- W4386868114 doi "https://doi.org/10.34016/pjbt.2023.20.02.804" @default.
- W4386868114 hasPublicationYear "2023" @default.
- W4386868114 type Work @default.
- W4386868114 citedByCount "0" @default.
- W4386868114 crossrefType "journal-article" @default.
- W4386868114 hasAuthorship W4386868114A5003905050 @default.
- W4386868114 hasAuthorship W4386868114A5004542314 @default.
- W4386868114 hasAuthorship W4386868114A5009082579 @default.
- W4386868114 hasAuthorship W4386868114A5028944564 @default.
- W4386868114 hasAuthorship W4386868114A5056399539 @default.
- W4386868114 hasAuthorship W4386868114A5065744632 @default.
- W4386868114 hasAuthorship W4386868114A5081634641 @default.
- W4386868114 hasBestOaLocation W43868681141 @default.
- W4386868114 hasConcept C119857082 @default.
- W4386868114 hasConcept C12267149 @default.
- W4386868114 hasConcept C153180895 @default.
- W4386868114 hasConcept C154945302 @default.
- W4386868114 hasConcept C169258074 @default.
- W4386868114 hasConcept C199360897 @default.
- W4386868114 hasConcept C2777515770 @default.
- W4386868114 hasConcept C2779843651 @default.
- W4386868114 hasConcept C41008148 @default.
- W4386868114 hasConcept C50644808 @default.
- W4386868114 hasConcept C52001869 @default.
- W4386868114 hasConcept C71924100 @default.
- W4386868114 hasConcept C99508421 @default.
- W4386868114 hasConceptScore W4386868114C119857082 @default.
- W4386868114 hasConceptScore W4386868114C12267149 @default.
- W4386868114 hasConceptScore W4386868114C153180895 @default.
- W4386868114 hasConceptScore W4386868114C154945302 @default.
- W4386868114 hasConceptScore W4386868114C169258074 @default.
- W4386868114 hasConceptScore W4386868114C199360897 @default.
- W4386868114 hasConceptScore W4386868114C2777515770 @default.
- W4386868114 hasConceptScore W4386868114C2779843651 @default.
- W4386868114 hasConceptScore W4386868114C41008148 @default.
- W4386868114 hasConceptScore W4386868114C50644808 @default.
- W4386868114 hasConceptScore W4386868114C52001869 @default.
- W4386868114 hasConceptScore W4386868114C71924100 @default.
- W4386868114 hasConceptScore W4386868114C99508421 @default.
- W4386868114 hasIssue "02" @default.
- W4386868114 hasLocation W43868681141 @default.
- W4386868114 hasOpenAccess W4386868114 @default.
- W4386868114 hasPrimaryLocation W43868681141 @default.
- W4386868114 hasRelatedWork W2985924212 @default.
- W4386868114 hasRelatedWork W3108448481 @default.
- W4386868114 hasRelatedWork W3168994312 @default.
- W4386868114 hasRelatedWork W3195168932 @default.