Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386870060> ?p ?o ?g. }
Showing items 1 to 82 of
82
with 100 items per page.
- W4386870060 endingPage "129" @default.
- W4386870060 startingPage "119" @default.
- W4386870060 abstract "Epicardial adipose tissue (EAT) located inside the pericardium is a marker for increased risk of many cardiovascular diseases. Automatic segmentation methods for pericardium or EAT are necessary to support the otherwise extremely time-consuming manual delineation in CT scans. Powerful deep learning-based methods have been applied to such segmentation tasks. However, existing methods primarily rely on region-based or distribution-based loss functions, such as Dice loss or cross-entropy loss. Unfortunately, these approaches overlook the informative anatomical priors, such as the shape of the pericardium. In light of this, our work introduces an innovative approach by proposing and comparing a shape-based loss that leverages anatomical priors derived from Fourier descriptors. By incorporating the anatomical prior, we aim to enhance the accuracy and effectiveness of pericardium or EAT segmentation. The Fourier descriptor loss can be used individually or as a regularizer with region-based losses such as the Dice loss for higher accuracy and faster convergence. As a regularizer, the proposed loss obtains the highest mean intersection of union (96.76%), Dice similarity coefficient (98.20%), and sensitivity (98.55%) outperforming the Dice and cross-entropy loss. We show the effect of the Fourier descriptor loss with fewer and weighted descriptors. The results show the efficiency and flexibility of the Fourier descriptor loss and its potential for segmenting shapes." @default.
- W4386870060 created "2023-09-20" @default.
- W4386870060 creator A5031138348 @default.
- W4386870060 creator A5078725649 @default.
- W4386870060 creator A5084733299 @default.
- W4386870060 date "2023-01-01" @default.
- W4386870060 modified "2023-09-27" @default.
- W4386870060 title "Fourier Descriptor Loss and Polar Coordinate Transformation for Pericardium Segmentation" @default.
- W4386870060 cites W1901129140 @default.
- W4386870060 cites W2004084358 @default.
- W4386870060 cites W2026616100 @default.
- W4386870060 cites W2096093777 @default.
- W4386870060 cites W2749253269 @default.
- W4386870060 cites W2884436604 @default.
- W4386870060 cites W2962731543 @default.
- W4386870060 cites W2962914239 @default.
- W4386870060 cites W2969508501 @default.
- W4386870060 cites W2972049363 @default.
- W4386870060 cites W3011818728 @default.
- W4386870060 cites W3136424010 @default.
- W4386870060 cites W3158629041 @default.
- W4386870060 cites W3166727904 @default.
- W4386870060 cites W3183684520 @default.
- W4386870060 cites W3193682252 @default.
- W4386870060 cites W4226126765 @default.
- W4386870060 cites W4253251070 @default.
- W4386870060 doi "https://doi.org/10.1007/978-3-031-44240-7_12" @default.
- W4386870060 hasPublicationYear "2023" @default.
- W4386870060 type Work @default.
- W4386870060 citedByCount "0" @default.
- W4386870060 crossrefType "book-chapter" @default.
- W4386870060 hasAuthorship W4386870060A5031138348 @default.
- W4386870060 hasAuthorship W4386870060A5078725649 @default.
- W4386870060 hasAuthorship W4386870060A5084733299 @default.
- W4386870060 hasConcept C105795698 @default.
- W4386870060 hasConcept C106301342 @default.
- W4386870060 hasConcept C107673813 @default.
- W4386870060 hasConcept C121332964 @default.
- W4386870060 hasConcept C124504099 @default.
- W4386870060 hasConcept C153180895 @default.
- W4386870060 hasConcept C154945302 @default.
- W4386870060 hasConcept C163892561 @default.
- W4386870060 hasConcept C167981619 @default.
- W4386870060 hasConcept C177769412 @default.
- W4386870060 hasConcept C22029948 @default.
- W4386870060 hasConcept C33923547 @default.
- W4386870060 hasConcept C41008148 @default.
- W4386870060 hasConcept C62520636 @default.
- W4386870060 hasConcept C89600930 @default.
- W4386870060 hasConceptScore W4386870060C105795698 @default.
- W4386870060 hasConceptScore W4386870060C106301342 @default.
- W4386870060 hasConceptScore W4386870060C107673813 @default.
- W4386870060 hasConceptScore W4386870060C121332964 @default.
- W4386870060 hasConceptScore W4386870060C124504099 @default.
- W4386870060 hasConceptScore W4386870060C153180895 @default.
- W4386870060 hasConceptScore W4386870060C154945302 @default.
- W4386870060 hasConceptScore W4386870060C163892561 @default.
- W4386870060 hasConceptScore W4386870060C167981619 @default.
- W4386870060 hasConceptScore W4386870060C177769412 @default.
- W4386870060 hasConceptScore W4386870060C22029948 @default.
- W4386870060 hasConceptScore W4386870060C33923547 @default.
- W4386870060 hasConceptScore W4386870060C41008148 @default.
- W4386870060 hasConceptScore W4386870060C62520636 @default.
- W4386870060 hasConceptScore W4386870060C89600930 @default.
- W4386870060 hasLocation W43868700601 @default.
- W4386870060 hasOpenAccess W4386870060 @default.
- W4386870060 hasPrimaryLocation W43868700601 @default.
- W4386870060 hasRelatedWork W2973136608 @default.
- W4386870060 hasRelatedWork W2999580839 @default.
- W4386870060 hasRelatedWork W3028344545 @default.
- W4386870060 hasRelatedWork W3082625452 @default.
- W4386870060 hasRelatedWork W3105697449 @default.
- W4386870060 hasRelatedWork W3125645017 @default.
- W4386870060 hasRelatedWork W3127138535 @default.
- W4386870060 hasRelatedWork W3170674674 @default.
- W4386870060 hasRelatedWork W4360850309 @default.
- W4386870060 hasRelatedWork W4386868325 @default.
- W4386870060 isParatext "false" @default.
- W4386870060 isRetracted "false" @default.
- W4386870060 workType "book-chapter" @default.