Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386870650> ?p ?o ?g. }
- W4386870650 endingPage "119" @default.
- W4386870650 startingPage "105" @default.
- W4386870650 abstract "The key aspect of power-utility firms is load forecasting. Utility companies may save millions of dollars by using load predictions with lower error rates. In this study, forecasting was implemented by applying a seasonal method and a time series method, namely SARIMA and LSTM, and model was evaluated using a 32-year dataset. Electricity consumption is a seasonal dataset with non-stationary nature and SARIMA model was successfully used to forecast the future values of the dataset. In comparison with LSTM, SARIMA produces the best results with the minimum mean square error and root mean square error. Also, a comparative study on wind energy forecasting using LSTM and SARIMA is carried out and the latter one gave better performance." @default.
- W4386870650 created "2023-09-20" @default.
- W4386870650 creator A5045800536 @default.
- W4386870650 creator A5056926059 @default.
- W4386870650 creator A5064521283 @default.
- W4386870650 creator A5081462892 @default.
- W4386870650 date "2023-01-01" @default.
- W4386870650 modified "2023-09-27" @default.
- W4386870650 title "Forecasting of Electrical Energy Consumption and Power Generation from Wind Energy Using Deep Learning Algorithms" @default.
- W4386870650 cites W2028765696 @default.
- W4386870650 cites W2044186388 @default.
- W4386870650 cites W2102836090 @default.
- W4386870650 cites W2275088575 @default.
- W4386870650 cites W2426270996 @default.
- W4386870650 cites W2559879705 @default.
- W4386870650 cites W2601171548 @default.
- W4386870650 cites W2744106784 @default.
- W4386870650 cites W2756532498 @default.
- W4386870650 cites W2761393103 @default.
- W4386870650 cites W2775155156 @default.
- W4386870650 cites W2895418405 @default.
- W4386870650 cites W2906865296 @default.
- W4386870650 cites W2914505053 @default.
- W4386870650 cites W2920901518 @default.
- W4386870650 cites W2945531072 @default.
- W4386870650 cites W2972001256 @default.
- W4386870650 cites W2972697822 @default.
- W4386870650 cites W2985890893 @default.
- W4386870650 cites W2995029263 @default.
- W4386870650 cites W2999869395 @default.
- W4386870650 cites W3004335670 @default.
- W4386870650 cites W3045300245 @default.
- W4386870650 cites W3100270150 @default.
- W4386870650 cites W3158692828 @default.
- W4386870650 cites W3189549537 @default.
- W4386870650 cites W3204362187 @default.
- W4386870650 cites W3205479680 @default.
- W4386870650 cites W4210494913 @default.
- W4386870650 doi "https://doi.org/10.1007/978-981-99-3963-3_9" @default.
- W4386870650 hasPublicationYear "2023" @default.
- W4386870650 type Work @default.
- W4386870650 citedByCount "0" @default.
- W4386870650 crossrefType "book-chapter" @default.
- W4386870650 hasAuthorship W4386870650A5045800536 @default.
- W4386870650 hasAuthorship W4386870650A5056926059 @default.
- W4386870650 hasAuthorship W4386870650A5064521283 @default.
- W4386870650 hasAuthorship W4386870650A5081462892 @default.
- W4386870650 hasConcept C105795698 @default.
- W4386870650 hasConcept C11413529 @default.
- W4386870650 hasConcept C119599485 @default.
- W4386870650 hasConcept C119857082 @default.
- W4386870650 hasConcept C121332964 @default.
- W4386870650 hasConcept C127413603 @default.
- W4386870650 hasConcept C139945424 @default.
- W4386870650 hasConcept C143724316 @default.
- W4386870650 hasConcept C144024400 @default.
- W4386870650 hasConcept C149782125 @default.
- W4386870650 hasConcept C151406439 @default.
- W4386870650 hasConcept C151730666 @default.
- W4386870650 hasConcept C154945302 @default.
- W4386870650 hasConcept C163258240 @default.
- W4386870650 hasConcept C174303752 @default.
- W4386870650 hasConcept C186370098 @default.
- W4386870650 hasConcept C206658404 @default.
- W4386870650 hasConcept C26517878 @default.
- W4386870650 hasConcept C2780165032 @default.
- W4386870650 hasConcept C2984118289 @default.
- W4386870650 hasConcept C30772137 @default.
- W4386870650 hasConcept C33923547 @default.
- W4386870650 hasConcept C36289849 @default.
- W4386870650 hasConcept C38652104 @default.
- W4386870650 hasConcept C41008148 @default.
- W4386870650 hasConcept C62520636 @default.
- W4386870650 hasConcept C78600449 @default.
- W4386870650 hasConcept C86803240 @default.
- W4386870650 hasConceptScore W4386870650C105795698 @default.
- W4386870650 hasConceptScore W4386870650C11413529 @default.
- W4386870650 hasConceptScore W4386870650C119599485 @default.
- W4386870650 hasConceptScore W4386870650C119857082 @default.
- W4386870650 hasConceptScore W4386870650C121332964 @default.
- W4386870650 hasConceptScore W4386870650C127413603 @default.
- W4386870650 hasConceptScore W4386870650C139945424 @default.
- W4386870650 hasConceptScore W4386870650C143724316 @default.
- W4386870650 hasConceptScore W4386870650C144024400 @default.
- W4386870650 hasConceptScore W4386870650C149782125 @default.
- W4386870650 hasConceptScore W4386870650C151406439 @default.
- W4386870650 hasConceptScore W4386870650C151730666 @default.
- W4386870650 hasConceptScore W4386870650C154945302 @default.
- W4386870650 hasConceptScore W4386870650C163258240 @default.
- W4386870650 hasConceptScore W4386870650C174303752 @default.
- W4386870650 hasConceptScore W4386870650C186370098 @default.
- W4386870650 hasConceptScore W4386870650C206658404 @default.
- W4386870650 hasConceptScore W4386870650C26517878 @default.
- W4386870650 hasConceptScore W4386870650C2780165032 @default.
- W4386870650 hasConceptScore W4386870650C2984118289 @default.
- W4386870650 hasConceptScore W4386870650C30772137 @default.
- W4386870650 hasConceptScore W4386870650C33923547 @default.
- W4386870650 hasConceptScore W4386870650C36289849 @default.