Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386870652> ?p ?o ?g. }
- W4386870652 endingPage "134" @default.
- W4386870652 startingPage "113" @default.
- W4386870652 abstract "In this chapter, we explore the use of multiresolution analysis techniques, including wavelet transforms such as the discrete wavelet transform (DWT), stationary wavelet transform (SWT), and empirical mode decomposition (EMD), for analyzing financial time series data in Matlab. These techniques allow for the decomposition of financial time series data into different frequency bands and the identification of trends and patterns at different scales, which can be useful for forecasting and trading strategies. We also explore the use of denoising techniques, such as wavelet thresholding, for improving the accuracy of financial time series data. Our results show that multiresolution analysis can provide valuable insights into financial time series data and can improve the performance of trading strategies." @default.
- W4386870652 created "2023-09-20" @default.
- W4386870652 creator A5023082133 @default.
- W4386870652 creator A5037925018 @default.
- W4386870652 creator A5049061029 @default.
- W4386870652 date "2023-01-01" @default.
- W4386870652 modified "2023-09-27" @default.
- W4386870652 title "Multiresolution Data Analytics for Financial Time Series Using MATLAB" @default.
- W4386870652 cites W1970278391 @default.
- W4386870652 cites W1983965282 @default.
- W4386870652 cites W2007221293 @default.
- W4386870652 cites W2025291942 @default.
- W4386870652 cites W2036664543 @default.
- W4386870652 cites W2093311990 @default.
- W4386870652 cites W2772087179 @default.
- W4386870652 cites W2907345037 @default.
- W4386870652 cites W2930650313 @default.
- W4386870652 cites W2932857337 @default.
- W4386870652 cites W2995808073 @default.
- W4386870652 cites W3006294612 @default.
- W4386870652 cites W3013586388 @default.
- W4386870652 cites W3037979079 @default.
- W4386870652 cites W4200147745 @default.
- W4386870652 cites W4205296446 @default.
- W4386870652 cites W4220821591 @default.
- W4386870652 cites W4225329207 @default.
- W4386870652 cites W4255272544 @default.
- W4386870652 cites W4281768138 @default.
- W4386870652 cites W4283591840 @default.
- W4386870652 cites W4362718566 @default.
- W4386870652 cites W916173959 @default.
- W4386870652 doi "https://doi.org/10.1007/978-3-031-36570-6_5" @default.
- W4386870652 hasPublicationYear "2023" @default.
- W4386870652 type Work @default.
- W4386870652 citedByCount "0" @default.
- W4386870652 crossrefType "book-chapter" @default.
- W4386870652 hasAuthorship W4386870652A5023082133 @default.
- W4386870652 hasAuthorship W4386870652A5037925018 @default.
- W4386870652 hasAuthorship W4386870652A5049061029 @default.
- W4386870652 hasConcept C10138342 @default.
- W4386870652 hasConcept C111919701 @default.
- W4386870652 hasConcept C112633086 @default.
- W4386870652 hasConcept C115961682 @default.
- W4386870652 hasConcept C119857082 @default.
- W4386870652 hasConcept C121927907 @default.
- W4386870652 hasConcept C124101348 @default.
- W4386870652 hasConcept C143724316 @default.
- W4386870652 hasConcept C149782125 @default.
- W4386870652 hasConcept C151406439 @default.
- W4386870652 hasConcept C151730666 @default.
- W4386870652 hasConcept C153180895 @default.
- W4386870652 hasConcept C154945302 @default.
- W4386870652 hasConcept C162324750 @default.
- W4386870652 hasConcept C191178318 @default.
- W4386870652 hasConcept C196216189 @default.
- W4386870652 hasConcept C25570617 @default.
- W4386870652 hasConcept C2780365114 @default.
- W4386870652 hasConcept C33923547 @default.
- W4386870652 hasConcept C41008148 @default.
- W4386870652 hasConcept C46286280 @default.
- W4386870652 hasConcept C47432892 @default.
- W4386870652 hasConcept C76155785 @default.
- W4386870652 hasConcept C86803240 @default.
- W4386870652 hasConceptScore W4386870652C10138342 @default.
- W4386870652 hasConceptScore W4386870652C111919701 @default.
- W4386870652 hasConceptScore W4386870652C112633086 @default.
- W4386870652 hasConceptScore W4386870652C115961682 @default.
- W4386870652 hasConceptScore W4386870652C119857082 @default.
- W4386870652 hasConceptScore W4386870652C121927907 @default.
- W4386870652 hasConceptScore W4386870652C124101348 @default.
- W4386870652 hasConceptScore W4386870652C143724316 @default.
- W4386870652 hasConceptScore W4386870652C149782125 @default.
- W4386870652 hasConceptScore W4386870652C151406439 @default.
- W4386870652 hasConceptScore W4386870652C151730666 @default.
- W4386870652 hasConceptScore W4386870652C153180895 @default.
- W4386870652 hasConceptScore W4386870652C154945302 @default.
- W4386870652 hasConceptScore W4386870652C162324750 @default.
- W4386870652 hasConceptScore W4386870652C191178318 @default.
- W4386870652 hasConceptScore W4386870652C196216189 @default.
- W4386870652 hasConceptScore W4386870652C25570617 @default.
- W4386870652 hasConceptScore W4386870652C2780365114 @default.
- W4386870652 hasConceptScore W4386870652C33923547 @default.
- W4386870652 hasConceptScore W4386870652C41008148 @default.
- W4386870652 hasConceptScore W4386870652C46286280 @default.
- W4386870652 hasConceptScore W4386870652C47432892 @default.
- W4386870652 hasConceptScore W4386870652C76155785 @default.
- W4386870652 hasConceptScore W4386870652C86803240 @default.
- W4386870652 hasLocation W43868706521 @default.
- W4386870652 hasOpenAccess W4386870652 @default.
- W4386870652 hasPrimaryLocation W43868706521 @default.
- W4386870652 hasRelatedWork W1577789985 @default.
- W4386870652 hasRelatedWork W2047056993 @default.
- W4386870652 hasRelatedWork W2057183507 @default.
- W4386870652 hasRelatedWork W2149590370 @default.
- W4386870652 hasRelatedWork W2542554451 @default.
- W4386870652 hasRelatedWork W2612328852 @default.
- W4386870652 hasRelatedWork W2741508286 @default.
- W4386870652 hasRelatedWork W2792520941 @default.