Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386871420> ?p ?o ?g. }
- W4386871420 endingPage "116351" @default.
- W4386871420 startingPage "116351" @default.
- W4386871420 abstract "Modern computational soft-tissue mechanics models have the potential to offer unique, patient-specific diagnostic insights. The deployment of such models in clinical settings has been limited however, due to the excessive computational costs incurred when performing mechanical simulations using conventional numerical solvers. An alternative approach to obtaining results in clinically relevant time frames is to make use of a computationally efficient surrogate model, called an emulator, in place of the numerical simulator. In this work, we propose an emulation framework for soft-tissue mechanics which builds on traditional approaches in two ways. Firstly, we use a Graph Neural Network (GNN) to perform emulation. GNNs can naturally handle the unique soft-tissue geometry of a given patient, without requiring any low-order approximations to be made. Secondly, the emulator is trained in a physics-informed manner to minimise a potential energy functional, meaning that no costly numerical simulations are required for training. We present results showing that our framework allows for highly accurate emulation for a range of soft-tissue mechanical models, while making predictions several orders of magnitude more quickly than the simulator." @default.
- W4386871420 created "2023-09-20" @default.
- W4386871420 creator A5046684345 @default.
- W4386871420 creator A5056928814 @default.
- W4386871420 creator A5080836461 @default.
- W4386871420 date "2023-12-01" @default.
- W4386871420 modified "2023-10-15" @default.
- W4386871420 title "Physics-informed graph neural network emulation of soft-tissue mechanics" @default.
- W4386871420 cites W1530806320 @default.
- W4386871420 cites W177314305 @default.
- W4386871420 cites W1964061879 @default.
- W4386871420 cites W1973333099 @default.
- W4386871420 cites W1978075626 @default.
- W4386871420 cites W2010737928 @default.
- W4386871420 cites W2027160064 @default.
- W4386871420 cites W2034650523 @default.
- W4386871420 cites W2097874869 @default.
- W4386871420 cites W2111406701 @default.
- W4386871420 cites W2123658287 @default.
- W4386871420 cites W2382574520 @default.
- W4386871420 cites W2732499818 @default.
- W4386871420 cites W2737684260 @default.
- W4386871420 cites W2804047627 @default.
- W4386871420 cites W2899283552 @default.
- W4386871420 cites W2954135312 @default.
- W4386871420 cites W2963300178 @default.
- W4386871420 cites W2963456417 @default.
- W4386871420 cites W2967531323 @default.
- W4386871420 cites W2973886134 @default.
- W4386871420 cites W2974861367 @default.
- W4386871420 cites W2982123645 @default.
- W4386871420 cites W2990689038 @default.
- W4386871420 cites W3026131914 @default.
- W4386871420 cites W3087414399 @default.
- W4386871420 cites W3091593783 @default.
- W4386871420 cites W3099160209 @default.
- W4386871420 cites W3099849883 @default.
- W4386871420 cites W3101260193 @default.
- W4386871420 cites W3105394141 @default.
- W4386871420 cites W3129768217 @default.
- W4386871420 cites W3155397377 @default.
- W4386871420 cites W3163993681 @default.
- W4386871420 cites W3164894983 @default.
- W4386871420 cites W3183994952 @default.
- W4386871420 cites W3198835738 @default.
- W4386871420 cites W3201958666 @default.
- W4386871420 cites W3203416853 @default.
- W4386871420 cites W3204011834 @default.
- W4386871420 cites W4200631298 @default.
- W4386871420 cites W4220662102 @default.
- W4386871420 cites W4284964239 @default.
- W4386871420 cites W4293425664 @default.
- W4386871420 cites W4302425293 @default.
- W4386871420 cites W4306179719 @default.
- W4386871420 cites W4310273071 @default.
- W4386871420 cites W4321793222 @default.
- W4386871420 doi "https://doi.org/10.1016/j.cma.2023.116351" @default.
- W4386871420 hasPublicationYear "2023" @default.
- W4386871420 type Work @default.
- W4386871420 citedByCount "0" @default.
- W4386871420 crossrefType "journal-article" @default.
- W4386871420 hasAuthorship W4386871420A5046684345 @default.
- W4386871420 hasAuthorship W4386871420A5056928814 @default.
- W4386871420 hasAuthorship W4386871420A5080836461 @default.
- W4386871420 hasBestOaLocation W43868714201 @default.
- W4386871420 hasConcept C105339364 @default.
- W4386871420 hasConcept C115903868 @default.
- W4386871420 hasConcept C121332964 @default.
- W4386871420 hasConcept C135628077 @default.
- W4386871420 hasConcept C140073362 @default.
- W4386871420 hasConcept C149810388 @default.
- W4386871420 hasConcept C154945302 @default.
- W4386871420 hasConcept C162324750 @default.
- W4386871420 hasConcept C41008148 @default.
- W4386871420 hasConcept C44154836 @default.
- W4386871420 hasConcept C459310 @default.
- W4386871420 hasConcept C50522688 @default.
- W4386871420 hasConcept C50644808 @default.
- W4386871420 hasConcept C66024118 @default.
- W4386871420 hasConcept C72514878 @default.
- W4386871420 hasConcept C97355855 @default.
- W4386871420 hasConceptScore W4386871420C105339364 @default.
- W4386871420 hasConceptScore W4386871420C115903868 @default.
- W4386871420 hasConceptScore W4386871420C121332964 @default.
- W4386871420 hasConceptScore W4386871420C135628077 @default.
- W4386871420 hasConceptScore W4386871420C140073362 @default.
- W4386871420 hasConceptScore W4386871420C149810388 @default.
- W4386871420 hasConceptScore W4386871420C154945302 @default.
- W4386871420 hasConceptScore W4386871420C162324750 @default.
- W4386871420 hasConceptScore W4386871420C41008148 @default.
- W4386871420 hasConceptScore W4386871420C44154836 @default.
- W4386871420 hasConceptScore W4386871420C459310 @default.
- W4386871420 hasConceptScore W4386871420C50522688 @default.
- W4386871420 hasConceptScore W4386871420C50644808 @default.
- W4386871420 hasConceptScore W4386871420C66024118 @default.
- W4386871420 hasConceptScore W4386871420C72514878 @default.
- W4386871420 hasConceptScore W4386871420C97355855 @default.
- W4386871420 hasFunder F4320334627 @default.