Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386871656> ?p ?o ?g. }
Showing items 1 to 71 of
71
with 100 items per page.
- W4386871656 abstract "<strong class=journal-contentHeaderColor>Abstract.</strong> Despite many existing approaches, modeling karst water resources remains challenging as conventional approaches usually heavily rely on distinct system knowledge. Artificial neural networks (ANNs), however, require only little prior knowledge to automatically establish an inputâoutput relationship. For ANN modeling in karst, the temporal and spatial data availability is often an important constraint, as usually no or few climate stations are located within or near karst spring catchments. Hence, spatial coverage is often not satisfactory and can result in substantial uncertainties about the true conditions in the catchment, leading to lower model performance. To overcome these problems, we apply convolutional neural networks (CNNs) to simulate karst spring discharge and to directly learn from spatially distributed climate input data (combined 2Dâ1D CNNs). We investigate three karst spring catchments in the Alpine and Mediterranean region with different meteorologicalâhydrological characteristics and hydrodynamic system properties. We compare the proposed approach both to existing modeling studies in these regions and to our own 1D CNN models that are conventionally trained with climate station input data. Our results show that all the models are excellently suited to modeling karst spring discharge (NSE: 0.73â0.87, KGE: 0.63â0.86) and can compete with the simulation results of existing approaches in the respective areas. The 2D models show a better fit than the 1D models in two of three cases and automatically learn to focus on the relevant areas of the input domain. By performing a spatial input sensitivity analysis, we can further show their usefulness in localizing the position of karst catchments." @default.
- W4386871656 created "2023-09-20" @default.
- W4386871656 date "2021-10-20" @default.
- W4386871656 modified "2023-09-27" @default.
- W4386871656 title "Comment on hess-2021-403" @default.
- W4386871656 doi "https://doi.org/10.5194/hess-2021-403-rc2" @default.
- W4386871656 hasPublicationYear "2021" @default.
- W4386871656 type Work @default.
- W4386871656 citedByCount "0" @default.
- W4386871656 crossrefType "peer-review" @default.
- W4386871656 hasBestOaLocation W43868716561 @default.
- W4386871656 hasConcept C120665830 @default.
- W4386871656 hasConcept C121332964 @default.
- W4386871656 hasConcept C124101348 @default.
- W4386871656 hasConcept C127313418 @default.
- W4386871656 hasConcept C127413603 @default.
- W4386871656 hasConcept C154945302 @default.
- W4386871656 hasConcept C166957645 @default.
- W4386871656 hasConcept C182348080 @default.
- W4386871656 hasConcept C187320778 @default.
- W4386871656 hasConcept C192209626 @default.
- W4386871656 hasConcept C205649164 @default.
- W4386871656 hasConcept C2524010 @default.
- W4386871656 hasConcept C2776036281 @default.
- W4386871656 hasConcept C2778712887 @default.
- W4386871656 hasConcept C33923547 @default.
- W4386871656 hasConcept C39432304 @default.
- W4386871656 hasConcept C41008148 @default.
- W4386871656 hasConcept C4646841 @default.
- W4386871656 hasConcept C76886044 @default.
- W4386871656 hasConcept C78519656 @default.
- W4386871656 hasConcept C79581498 @default.
- W4386871656 hasConcept C81363708 @default.
- W4386871656 hasConceptScore W4386871656C120665830 @default.
- W4386871656 hasConceptScore W4386871656C121332964 @default.
- W4386871656 hasConceptScore W4386871656C124101348 @default.
- W4386871656 hasConceptScore W4386871656C127313418 @default.
- W4386871656 hasConceptScore W4386871656C127413603 @default.
- W4386871656 hasConceptScore W4386871656C154945302 @default.
- W4386871656 hasConceptScore W4386871656C166957645 @default.
- W4386871656 hasConceptScore W4386871656C182348080 @default.
- W4386871656 hasConceptScore W4386871656C187320778 @default.
- W4386871656 hasConceptScore W4386871656C192209626 @default.
- W4386871656 hasConceptScore W4386871656C205649164 @default.
- W4386871656 hasConceptScore W4386871656C2524010 @default.
- W4386871656 hasConceptScore W4386871656C2776036281 @default.
- W4386871656 hasConceptScore W4386871656C2778712887 @default.
- W4386871656 hasConceptScore W4386871656C33923547 @default.
- W4386871656 hasConceptScore W4386871656C39432304 @default.
- W4386871656 hasConceptScore W4386871656C41008148 @default.
- W4386871656 hasConceptScore W4386871656C4646841 @default.
- W4386871656 hasConceptScore W4386871656C76886044 @default.
- W4386871656 hasConceptScore W4386871656C78519656 @default.
- W4386871656 hasConceptScore W4386871656C79581498 @default.
- W4386871656 hasConceptScore W4386871656C81363708 @default.
- W4386871656 hasLocation W43868716561 @default.
- W4386871656 hasOpenAccess W4386871656 @default.
- W4386871656 hasPrimaryLocation W43868716561 @default.
- W4386871656 hasRelatedWork W2006364275 @default.
- W4386871656 hasRelatedWork W2087619842 @default.
- W4386871656 hasRelatedWork W2088011665 @default.
- W4386871656 hasRelatedWork W2362174818 @default.
- W4386871656 hasRelatedWork W2366471702 @default.
- W4386871656 hasRelatedWork W2393212696 @default.
- W4386871656 hasRelatedWork W2890429182 @default.
- W4386871656 hasRelatedWork W2899084033 @default.
- W4386871656 hasRelatedWork W3091473500 @default.
- W4386871656 hasRelatedWork W4312301016 @default.
- W4386871656 isParatext "false" @default.
- W4386871656 isRetracted "false" @default.
- W4386871656 workType "peer-review" @default.