Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386874167> ?p ?o ?g. }
Showing items 1 to 63 of
63
with 100 items per page.
- W4386874167 abstract "Abstract Grasping is Fundamental in various robotic applications, particularly within industrial contexts. Accurate inference of object properties is a crucial step toward enhancing grasping quality. Dynamic and Active Vision Sensors (DAVIS), increasingly utilized for robotic grasping, offer superior energy efficiency, lower latency, and higher temporal resolution than traditional cameras. However, the data they generate can be complex and noisy, necessitating substantial pre-processing. In response to these challenges, we introduce GraspHD, an innovative end-to-end algorithm that leverages brain-inspired hyperdimensional computing (HDC) to learn about the size and hardness of objects and estimate the grasping force. This novel approach circumvents the need for resource-intensive pre-processing steps, capitalizing on the simplicity and inherent parallelism of HDC operations. Our comprehensive analysis reveals that GraspHD surpasses state-of-the-art approaches in terms of overall classification accuracy. We have also implemented GraspHD on an FPGA to evaluate system efficiency. The results demonstrate that GraspHD operates at a speed 10x faster and offers an energy efficiency 26 times higher than existing learning algorithms, all while maintaining robust performance in noisy environments. These findings underscore the significant potential of GraspHD as a more efficient and effective solution for real-time robotic grasping applications." @default.
- W4386874167 created "2023-09-20" @default.
- W4386874167 creator A5013814572 @default.
- W4386874167 creator A5033221192 @default.
- W4386874167 creator A5035947458 @default.
- W4386874167 creator A5040624202 @default.
- W4386874167 creator A5049207012 @default.
- W4386874167 creator A5057275866 @default.
- W4386874167 creator A5078108496 @default.
- W4386874167 date "2023-09-19" @default.
- W4386874167 modified "2023-09-28" @default.
- W4386874167 title "Efficient Event-Based Robotic Grasping Perception using Hyperdimensional Computing" @default.
- W4386874167 doi "https://doi.org/10.21203/rs.3.rs-3329717/v1" @default.
- W4386874167 hasPublicationYear "2023" @default.
- W4386874167 type Work @default.
- W4386874167 citedByCount "0" @default.
- W4386874167 crossrefType "posted-content" @default.
- W4386874167 hasAuthorship W4386874167A5013814572 @default.
- W4386874167 hasAuthorship W4386874167A5033221192 @default.
- W4386874167 hasAuthorship W4386874167A5035947458 @default.
- W4386874167 hasAuthorship W4386874167A5040624202 @default.
- W4386874167 hasAuthorship W4386874167A5049207012 @default.
- W4386874167 hasAuthorship W4386874167A5057275866 @default.
- W4386874167 hasAuthorship W4386874167A5078108496 @default.
- W4386874167 hasBestOaLocation W43868741671 @default.
- W4386874167 hasConcept C113775141 @default.
- W4386874167 hasConcept C119599485 @default.
- W4386874167 hasConcept C127413603 @default.
- W4386874167 hasConcept C154945302 @default.
- W4386874167 hasConcept C2742236 @default.
- W4386874167 hasConcept C2776214188 @default.
- W4386874167 hasConcept C31972630 @default.
- W4386874167 hasConcept C41008148 @default.
- W4386874167 hasConcept C76155785 @default.
- W4386874167 hasConcept C79403827 @default.
- W4386874167 hasConcept C82876162 @default.
- W4386874167 hasConceptScore W4386874167C113775141 @default.
- W4386874167 hasConceptScore W4386874167C119599485 @default.
- W4386874167 hasConceptScore W4386874167C127413603 @default.
- W4386874167 hasConceptScore W4386874167C154945302 @default.
- W4386874167 hasConceptScore W4386874167C2742236 @default.
- W4386874167 hasConceptScore W4386874167C2776214188 @default.
- W4386874167 hasConceptScore W4386874167C31972630 @default.
- W4386874167 hasConceptScore W4386874167C41008148 @default.
- W4386874167 hasConceptScore W4386874167C76155785 @default.
- W4386874167 hasConceptScore W4386874167C79403827 @default.
- W4386874167 hasConceptScore W4386874167C82876162 @default.
- W4386874167 hasLocation W43868741671 @default.
- W4386874167 hasOpenAccess W4386874167 @default.
- W4386874167 hasPrimaryLocation W43868741671 @default.
- W4386874167 hasRelatedWork W1891287906 @default.
- W4386874167 hasRelatedWork W2036807459 @default.
- W4386874167 hasRelatedWork W2981519481 @default.
- W4386874167 hasRelatedWork W3091913713 @default.
- W4386874167 hasRelatedWork W3165698711 @default.
- W4386874167 hasRelatedWork W3195610113 @default.
- W4386874167 hasRelatedWork W4285327616 @default.
- W4386874167 hasRelatedWork W4294982680 @default.
- W4386874167 hasRelatedWork W4318348488 @default.
- W4386874167 hasRelatedWork W4319994481 @default.
- W4386874167 isParatext "false" @default.
- W4386874167 isRetracted "false" @default.
- W4386874167 workType "article" @default.