Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386875647> ?p ?o ?g. }
Showing items 1 to 75 of
75
with 100 items per page.
- W4386875647 abstract "Quantum machine learning (QML) is emerging as an application of quantum computing with the potential to deliver quantum advantage, but its realisation for practical applications remains impeded by challenges. Amongst those, a key barrier is the computationally expensive task of encoding classical data into a quantum state, which could erase any prospective speed-ups over classical algorithms. In this work, we implement methods for the efficient preparation of quantum states representing encoded image data using variational, genetic and matrix product state based algorithms. Our results show that these methods can approximately prepare states to a level suitable for QML using circuits two orders of magnitude shallower than a standard state preparation implementation, obtaining drastic savings in circuit depth and gate count without unduly sacrificing classification accuracy. Additionally, the QML models trained and evaluated on approximately encoded data display an increased robustness to adversarially generated input data perturbations. This partial alleviation of adversarial vulnerability, possible due to the drowning out of adversarial perturbations while retaining the meaningful large-scale features of the data, constitutes a considerable benefit for approximate state preparation in addition to lessening the requirements of the quantum hardware. Our results, based on simulations and experiments on IBM quantum devices, highlight a promising pathway for the future implementation of accurate and robust QML models on complex datasets relevant for practical applications, bringing the possibility of NISQ-era QML advantage closer to reality." @default.
- W4386875647 created "2023-09-20" @default.
- W4386875647 creator A5006045678 @default.
- W4386875647 creator A5008189923 @default.
- W4386875647 creator A5030228086 @default.
- W4386875647 creator A5041859065 @default.
- W4386875647 creator A5048403895 @default.
- W4386875647 creator A5089035663 @default.
- W4386875647 creator A5092905579 @default.
- W4386875647 date "2023-09-17" @default.
- W4386875647 modified "2023-09-27" @default.
- W4386875647 title "Drastic Circuit Depth Reductions with Preserved Adversarial Robustness by Approximate Encoding for Quantum Machine Learning" @default.
- W4386875647 doi "https://doi.org/10.48550/arxiv.2309.09424" @default.
- W4386875647 hasPublicationYear "2023" @default.
- W4386875647 type Work @default.
- W4386875647 citedByCount "0" @default.
- W4386875647 crossrefType "posted-content" @default.
- W4386875647 hasAuthorship W4386875647A5006045678 @default.
- W4386875647 hasAuthorship W4386875647A5008189923 @default.
- W4386875647 hasAuthorship W4386875647A5030228086 @default.
- W4386875647 hasAuthorship W4386875647A5041859065 @default.
- W4386875647 hasAuthorship W4386875647A5048403895 @default.
- W4386875647 hasAuthorship W4386875647A5089035663 @default.
- W4386875647 hasAuthorship W4386875647A5092905579 @default.
- W4386875647 hasBestOaLocation W43868756471 @default.
- W4386875647 hasConcept C104317684 @default.
- W4386875647 hasConcept C113775141 @default.
- W4386875647 hasConcept C11413529 @default.
- W4386875647 hasConcept C119857082 @default.
- W4386875647 hasConcept C121332964 @default.
- W4386875647 hasConcept C124148022 @default.
- W4386875647 hasConcept C137019171 @default.
- W4386875647 hasConcept C154945302 @default.
- W4386875647 hasConcept C185592680 @default.
- W4386875647 hasConcept C186468114 @default.
- W4386875647 hasConcept C41008148 @default.
- W4386875647 hasConcept C55493867 @default.
- W4386875647 hasConcept C58053490 @default.
- W4386875647 hasConcept C62520636 @default.
- W4386875647 hasConcept C63479239 @default.
- W4386875647 hasConcept C80444323 @default.
- W4386875647 hasConcept C84114770 @default.
- W4386875647 hasConceptScore W4386875647C104317684 @default.
- W4386875647 hasConceptScore W4386875647C113775141 @default.
- W4386875647 hasConceptScore W4386875647C11413529 @default.
- W4386875647 hasConceptScore W4386875647C119857082 @default.
- W4386875647 hasConceptScore W4386875647C121332964 @default.
- W4386875647 hasConceptScore W4386875647C124148022 @default.
- W4386875647 hasConceptScore W4386875647C137019171 @default.
- W4386875647 hasConceptScore W4386875647C154945302 @default.
- W4386875647 hasConceptScore W4386875647C185592680 @default.
- W4386875647 hasConceptScore W4386875647C186468114 @default.
- W4386875647 hasConceptScore W4386875647C41008148 @default.
- W4386875647 hasConceptScore W4386875647C55493867 @default.
- W4386875647 hasConceptScore W4386875647C58053490 @default.
- W4386875647 hasConceptScore W4386875647C62520636 @default.
- W4386875647 hasConceptScore W4386875647C63479239 @default.
- W4386875647 hasConceptScore W4386875647C80444323 @default.
- W4386875647 hasConceptScore W4386875647C84114770 @default.
- W4386875647 hasLocation W43868756471 @default.
- W4386875647 hasOpenAccess W4386875647 @default.
- W4386875647 hasPrimaryLocation W43868756471 @default.
- W4386875647 hasRelatedWork W1028212721 @default.
- W4386875647 hasRelatedWork W1981303046 @default.
- W4386875647 hasRelatedWork W2991324428 @default.
- W4386875647 hasRelatedWork W2997740458 @default.
- W4386875647 hasRelatedWork W2998082510 @default.
- W4386875647 hasRelatedWork W3130011271 @default.
- W4386875647 hasRelatedWork W3153758851 @default.
- W4386875647 hasRelatedWork W3183333684 @default.
- W4386875647 hasRelatedWork W4283824544 @default.
- W4386875647 hasRelatedWork W4379116016 @default.
- W4386875647 isParatext "false" @default.
- W4386875647 isRetracted "false" @default.
- W4386875647 workType "article" @default.