Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386875985> ?p ?o ?g. }
Showing items 1 to 69 of
69
with 100 items per page.
- W4386875985 abstract "Tensor decomposition methods are popular tools for analysis of multi-way datasets from social media, healthcare, spatio-temporal domains, and others. Widely adopted models such as Tucker and canonical polyadic decomposition (CPD) follow a data-driven philosophy: they decompose a tensor into factors that approximate the observed data well. In some cases side information is available about the tensor modes. For example, in a temporal user-item purchases tensor a user influence graph, an item similarity graph, and knowledge about seasonality or trends in the temporal mode may be available. Such side information may enable more succinct and interpretable tensor decomposition models and improved quality in downstream tasks. We propose a framework for Multi-Dictionary Tensor Decomposition (MDTD) which takes advantage of prior structural information about tensor modes in the form of coding dictionaries to obtain sparsely encoded tensor factors. We derive a general optimization algorithm for MDTD that handles both complete input and input with missing values. Our framework handles large sparse tensors typical to many real-world application domains. We demonstrate MDTD's utility via experiments with both synthetic and real-world datasets. It learns more concise models than dictionary-free counterparts and improves (i) reconstruction quality ($60%$ fewer non-zero coefficients coupled with smaller error); (ii) missing values imputation quality (two-fold MSE reduction with up to orders of magnitude time savings) and (iii) the estimation of the tensor rank. MDTD's quality improvements do not come with a running time premium: it can decompose $19GB$ datasets in less than a minute. It can also impute missing values in sparse billion-entry tensors more accurately and scalably than state-of-the-art competitors." @default.
- W4386875985 created "2023-09-20" @default.
- W4386875985 creator A5001272357 @default.
- W4386875985 creator A5040305954 @default.
- W4386875985 date "2023-09-18" @default.
- W4386875985 modified "2023-09-27" @default.
- W4386875985 title "Multi-Dictionary Tensor Decomposition" @default.
- W4386875985 doi "https://doi.org/10.48550/arxiv.2309.09717" @default.
- W4386875985 hasPublicationYear "2023" @default.
- W4386875985 type Work @default.
- W4386875985 citedByCount "0" @default.
- W4386875985 crossrefType "posted-content" @default.
- W4386875985 hasAuthorship W4386875985A5001272357 @default.
- W4386875985 hasAuthorship W4386875985A5040305954 @default.
- W4386875985 hasBestOaLocation W43868759851 @default.
- W4386875985 hasConcept C11413529 @default.
- W4386875985 hasConcept C114614502 @default.
- W4386875985 hasConcept C119857082 @default.
- W4386875985 hasConcept C124101348 @default.
- W4386875985 hasConcept C124681953 @default.
- W4386875985 hasConcept C132525143 @default.
- W4386875985 hasConcept C154945302 @default.
- W4386875985 hasConcept C155281189 @default.
- W4386875985 hasConcept C164226766 @default.
- W4386875985 hasConcept C18903297 @default.
- W4386875985 hasConcept C202444582 @default.
- W4386875985 hasConcept C2986737658 @default.
- W4386875985 hasConcept C33923547 @default.
- W4386875985 hasConcept C41008148 @default.
- W4386875985 hasConcept C42704193 @default.
- W4386875985 hasConcept C58041806 @default.
- W4386875985 hasConcept C80444323 @default.
- W4386875985 hasConcept C86803240 @default.
- W4386875985 hasConcept C9357733 @default.
- W4386875985 hasConceptScore W4386875985C11413529 @default.
- W4386875985 hasConceptScore W4386875985C114614502 @default.
- W4386875985 hasConceptScore W4386875985C119857082 @default.
- W4386875985 hasConceptScore W4386875985C124101348 @default.
- W4386875985 hasConceptScore W4386875985C124681953 @default.
- W4386875985 hasConceptScore W4386875985C132525143 @default.
- W4386875985 hasConceptScore W4386875985C154945302 @default.
- W4386875985 hasConceptScore W4386875985C155281189 @default.
- W4386875985 hasConceptScore W4386875985C164226766 @default.
- W4386875985 hasConceptScore W4386875985C18903297 @default.
- W4386875985 hasConceptScore W4386875985C202444582 @default.
- W4386875985 hasConceptScore W4386875985C2986737658 @default.
- W4386875985 hasConceptScore W4386875985C33923547 @default.
- W4386875985 hasConceptScore W4386875985C41008148 @default.
- W4386875985 hasConceptScore W4386875985C42704193 @default.
- W4386875985 hasConceptScore W4386875985C58041806 @default.
- W4386875985 hasConceptScore W4386875985C80444323 @default.
- W4386875985 hasConceptScore W4386875985C86803240 @default.
- W4386875985 hasConceptScore W4386875985C9357733 @default.
- W4386875985 hasLocation W43868759851 @default.
- W4386875985 hasOpenAccess W4386875985 @default.
- W4386875985 hasPrimaryLocation W43868759851 @default.
- W4386875985 hasRelatedWork W2393920986 @default.
- W4386875985 hasRelatedWork W2891735857 @default.
- W4386875985 hasRelatedWork W3179102118 @default.
- W4386875985 hasRelatedWork W4200201902 @default.
- W4386875985 hasRelatedWork W4205920284 @default.
- W4386875985 hasRelatedWork W4293328203 @default.
- W4386875985 hasRelatedWork W4320559629 @default.
- W4386875985 hasRelatedWork W4363650386 @default.
- W4386875985 hasRelatedWork W4386570618 @default.
- W4386875985 hasRelatedWork W2765083400 @default.
- W4386875985 isParatext "false" @default.
- W4386875985 isRetracted "false" @default.
- W4386875985 workType "article" @default.