Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386880045> ?p ?o ?g. }
Showing items 1 to 97 of
97
with 100 items per page.
- W4386880045 endingPage "121653" @default.
- W4386880045 startingPage "121653" @default.
- W4386880045 abstract "Thermal management of photovoltaic systems is important since their electrical output decreases with the increase in temperature. Thermal regulation of a photovoltaic system using a phase change material is an effective technique, but a careful selection of PCM in terms of its thermophysical properties is essential for its better performance. In this work, performance analysis of a novel medium concentrated photovoltaic system employing two mono-facial polycrystalline cells is carried out. The system is thermally regulated with a phase change material. An experimentally validated finite element-based coupled optical, thermal, and electrical model is used to analyze the system’s performance. The impact of the thermophysical properties of a PCM such as melting temperature, thermal conductivity, and heat of fusion on the thermal regulation of the system is studied using artificial neural networking methods. The optimum thermophysical properties of the PCM are determined using parametric analysis for the ambient temperatures ranging between 25–50°C and a concentration ratio of 20×. Moreover, the performance of the system is analyzed using the optimum PCM for the semi-arid weather conditions of Lahore, Pakistan and the optimum PCM for oceanic weather conditions of Waterford, Ireland. It is found that the melting temperature, thermal conductivity, and heat of fusion of the PCM have a linearly indirect relationship with the temperature of the photovoltaic system while the ambient temperature has a linearly direct relationship with the photovoltaic system’s temperature. The melting temperature of a PCM should be 10-15°C higher than the ambient temperatures up to the ambient temperature of 40°C. The melting temperature of a PCM was found to be 5 – 10°C higher than the ambient temperatures for ambient temperatures greater than 40°C. The required thermal conductivity of a PCM increases with the increase in ambient temperature ranging from 10-12 Wm-1K-1 for the ambient temperature of 25°C while 18-20 Wm-1K-1 for the ambient temperature of 50°C. The suitable heat of fusion is found in the range of 210-220 kJkg-1. It is found that the optimum PCM for Lahore has melting temperature, thermal conductivity, and heat of fusion of 53-56°C, 19 Wm-1K-1 and 220 kJkg-1 respectively. The optimum PCM for Waterford has melting temperature, thermal conductivity, and heat of fusion of 35-37°C, 11 Wm-1K-1 and 220kJkg-1 respectively. The maximum temperature of concentrated photovoltaic cell for Lahore, Pakistan remains below 83°C, while for Waterford, Ireland, it is below 59°C for all the months in a year. From April to August, the output power is higher for Waterford with an average difference of 12%, while from September to March, Lahore has the higher power output with an average difference of 47%. The maximum power obtained for Lahore is 0.185kWh/day/m2, while for Ireland it is 0.213kWh/day/m2. A maximum deviation of 6% is found for electrical output and less than 3% for thermal output between simulated and experimental results during validation." @default.
- W4386880045 created "2023-09-21" @default.
- W4386880045 creator A5001320925 @default.
- W4386880045 creator A5028840927 @default.
- W4386880045 creator A5033816757 @default.
- W4386880045 creator A5040023334 @default.
- W4386880045 creator A5043484291 @default.
- W4386880045 creator A5059129621 @default.
- W4386880045 creator A5063971467 @default.
- W4386880045 creator A5074159388 @default.
- W4386880045 date "2024-01-01" @default.
- W4386880045 modified "2023-10-05" @default.
- W4386880045 title "Performance analysis of a medium concentrated photovoltaic system thermally regulated by phase change material: Phase change material selection and comparative analysis for different climates" @default.
- W4386880045 cites W1529571442 @default.
- W4386880045 cites W1991902922 @default.
- W4386880045 cites W1996706988 @default.
- W4386880045 cites W2026276656 @default.
- W4386880045 cites W2056347833 @default.
- W4386880045 cites W2075409469 @default.
- W4386880045 cites W2131841686 @default.
- W4386880045 cites W2147632348 @default.
- W4386880045 cites W2276155771 @default.
- W4386880045 cites W2303908931 @default.
- W4386880045 cites W2471017503 @default.
- W4386880045 cites W2499113799 @default.
- W4386880045 cites W2528710021 @default.
- W4386880045 cites W2591958942 @default.
- W4386880045 cites W2767190330 @default.
- W4386880045 cites W2804446681 @default.
- W4386880045 cites W2884730642 @default.
- W4386880045 cites W2894943196 @default.
- W4386880045 cites W2898230633 @default.
- W4386880045 cites W2904945608 @default.
- W4386880045 cites W2914705510 @default.
- W4386880045 cites W2980132640 @default.
- W4386880045 cites W2994447275 @default.
- W4386880045 cites W3013336769 @default.
- W4386880045 cites W3044781833 @default.
- W4386880045 cites W3116048928 @default.
- W4386880045 cites W3162010962 @default.
- W4386880045 cites W3165698183 @default.
- W4386880045 doi "https://doi.org/10.1016/j.applthermaleng.2023.121653" @default.
- W4386880045 hasPublicationYear "2024" @default.
- W4386880045 type Work @default.
- W4386880045 citedByCount "0" @default.
- W4386880045 crossrefType "journal-article" @default.
- W4386880045 hasAuthorship W4386880045A5001320925 @default.
- W4386880045 hasAuthorship W4386880045A5028840927 @default.
- W4386880045 hasAuthorship W4386880045A5033816757 @default.
- W4386880045 hasAuthorship W4386880045A5040023334 @default.
- W4386880045 hasAuthorship W4386880045A5043484291 @default.
- W4386880045 hasAuthorship W4386880045A5059129621 @default.
- W4386880045 hasAuthorship W4386880045A5063971467 @default.
- W4386880045 hasAuthorship W4386880045A5074159388 @default.
- W4386880045 hasConcept C119599485 @default.
- W4386880045 hasConcept C121332964 @default.
- W4386880045 hasConcept C127413603 @default.
- W4386880045 hasConcept C129564387 @default.
- W4386880045 hasConcept C13530604 @default.
- W4386880045 hasConcept C159985019 @default.
- W4386880045 hasConcept C192562407 @default.
- W4386880045 hasConcept C204530211 @default.
- W4386880045 hasConcept C2778119658 @default.
- W4386880045 hasConcept C41291067 @default.
- W4386880045 hasConcept C97346530 @default.
- W4386880045 hasConcept C97355855 @default.
- W4386880045 hasConceptScore W4386880045C119599485 @default.
- W4386880045 hasConceptScore W4386880045C121332964 @default.
- W4386880045 hasConceptScore W4386880045C127413603 @default.
- W4386880045 hasConceptScore W4386880045C129564387 @default.
- W4386880045 hasConceptScore W4386880045C13530604 @default.
- W4386880045 hasConceptScore W4386880045C159985019 @default.
- W4386880045 hasConceptScore W4386880045C192562407 @default.
- W4386880045 hasConceptScore W4386880045C204530211 @default.
- W4386880045 hasConceptScore W4386880045C2778119658 @default.
- W4386880045 hasConceptScore W4386880045C41291067 @default.
- W4386880045 hasConceptScore W4386880045C97346530 @default.
- W4386880045 hasConceptScore W4386880045C97355855 @default.
- W4386880045 hasLocation W43868800451 @default.
- W4386880045 hasOpenAccess W4386880045 @default.
- W4386880045 hasPrimaryLocation W43868800451 @default.
- W4386880045 hasRelatedWork W2003236440 @default.
- W4386880045 hasRelatedWork W2041526826 @default.
- W4386880045 hasRelatedWork W2188254031 @default.
- W4386880045 hasRelatedWork W2209818552 @default.
- W4386880045 hasRelatedWork W2233206421 @default.
- W4386880045 hasRelatedWork W2363848459 @default.
- W4386880045 hasRelatedWork W2386793766 @default.
- W4386880045 hasRelatedWork W2897411458 @default.
- W4386880045 hasRelatedWork W2908343713 @default.
- W4386880045 hasRelatedWork W767462355 @default.
- W4386880045 hasVolume "236" @default.
- W4386880045 isParatext "false" @default.
- W4386880045 isRetracted "false" @default.
- W4386880045 workType "article" @default.