Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386880052> ?p ?o ?g. }
- W4386880052 endingPage "10479" @default.
- W4386880052 startingPage "10479" @default.
- W4386880052 abstract "Seepage is the primary cause of dam failures. Conducting regular seepage analysis for dams can effectively prevent accidents from occurring. Accurate and rapid determination of seepage parameters is a prerequisite for seepage calculation in hydraulic engineering. The Whale Optimization Algorithm (WOA) was combined with Support Vector Regression (SVR) to invert the hydraulic conductivity. The good point set initialization method, a cosine-based nonlinear convergence factor, the Levy flight strategy, and the Quasi-oppositional learning strategy were employed to improve WOA. The effectiveness and practicality of Improved Whale Optimization Algorithm (IWOA) were evaluated via numerical experiments. As a case study, the seepage parameters of the Dono Dam located on the Baishui River in China were inversed, adopting the proposed inversion model. The calculated seepage field was reasonable, and the relative error between the simulated head and the measured value at each monitoring point was within 2%. This new inversion method is more feasible and accurate than the existing hydraulic conductivity estimation methods." @default.
- W4386880052 created "2023-09-21" @default.
- W4386880052 creator A5014946491 @default.
- W4386880052 creator A5022798957 @default.
- W4386880052 creator A5032717044 @default.
- W4386880052 creator A5037023220 @default.
- W4386880052 creator A5037625233 @default.
- W4386880052 creator A5058779671 @default.
- W4386880052 creator A5076862826 @default.
- W4386880052 date "2023-09-20" @default.
- W4386880052 modified "2023-09-27" @default.
- W4386880052 title "A New Approach for Seepage Parameters Inversion Analysis Using Improved Whale Optimization Algorithm and Support Vector Regression" @default.
- W4386880052 cites W1879397359 @default.
- W4386880052 cites W1969830104 @default.
- W4386880052 cites W1987281309 @default.
- W4386880052 cites W1992662507 @default.
- W4386880052 cites W1994080925 @default.
- W4386880052 cites W2052774360 @default.
- W4386880052 cites W2062955239 @default.
- W4386880052 cites W2089000311 @default.
- W4386880052 cites W2131258393 @default.
- W4386880052 cites W2143628522 @default.
- W4386880052 cites W2178111456 @default.
- W4386880052 cites W2202448957 @default.
- W4386880052 cites W2234301024 @default.
- W4386880052 cites W2271236145 @default.
- W4386880052 cites W2290883490 @default.
- W4386880052 cites W2598199852 @default.
- W4386880052 cites W2789674002 @default.
- W4386880052 cites W2902792464 @default.
- W4386880052 cites W2941717894 @default.
- W4386880052 cites W2949426472 @default.
- W4386880052 cites W2971815061 @default.
- W4386880052 cites W3007433880 @default.
- W4386880052 cites W3014628627 @default.
- W4386880052 cites W3024668705 @default.
- W4386880052 cites W3036480505 @default.
- W4386880052 cites W3083754094 @default.
- W4386880052 cites W3153171001 @default.
- W4386880052 cites W3172161532 @default.
- W4386880052 cites W3199223888 @default.
- W4386880052 cites W3206520017 @default.
- W4386880052 cites W3215530652 @default.
- W4386880052 cites W4234818230 @default.
- W4386880052 cites W4243897215 @default.
- W4386880052 cites W4293106078 @default.
- W4386880052 cites W4361868517 @default.
- W4386880052 doi "https://doi.org/10.3390/app131810479" @default.
- W4386880052 hasPublicationYear "2023" @default.
- W4386880052 type Work @default.
- W4386880052 citedByCount "0" @default.
- W4386880052 crossrefType "journal-article" @default.
- W4386880052 hasAuthorship W4386880052A5014946491 @default.
- W4386880052 hasAuthorship W4386880052A5022798957 @default.
- W4386880052 hasAuthorship W4386880052A5032717044 @default.
- W4386880052 hasAuthorship W4386880052A5037023220 @default.
- W4386880052 hasAuthorship W4386880052A5037625233 @default.
- W4386880052 hasAuthorship W4386880052A5058779671 @default.
- W4386880052 hasAuthorship W4386880052A5076862826 @default.
- W4386880052 hasBestOaLocation W43868800521 @default.
- W4386880052 hasConcept C109007969 @default.
- W4386880052 hasConcept C11413529 @default.
- W4386880052 hasConcept C114466953 @default.
- W4386880052 hasConcept C12267149 @default.
- W4386880052 hasConcept C126255220 @default.
- W4386880052 hasConcept C127313418 @default.
- W4386880052 hasConcept C151730666 @default.
- W4386880052 hasConcept C154945302 @default.
- W4386880052 hasConcept C1893757 @default.
- W4386880052 hasConcept C199360897 @default.
- W4386880052 hasConcept C2777704720 @default.
- W4386880052 hasConcept C2987595161 @default.
- W4386880052 hasConcept C33923547 @default.
- W4386880052 hasConcept C41008148 @default.
- W4386880052 hasConcept C505870484 @default.
- W4386880052 hasConcept C86803240 @default.
- W4386880052 hasConceptScore W4386880052C109007969 @default.
- W4386880052 hasConceptScore W4386880052C11413529 @default.
- W4386880052 hasConceptScore W4386880052C114466953 @default.
- W4386880052 hasConceptScore W4386880052C12267149 @default.
- W4386880052 hasConceptScore W4386880052C126255220 @default.
- W4386880052 hasConceptScore W4386880052C127313418 @default.
- W4386880052 hasConceptScore W4386880052C151730666 @default.
- W4386880052 hasConceptScore W4386880052C154945302 @default.
- W4386880052 hasConceptScore W4386880052C1893757 @default.
- W4386880052 hasConceptScore W4386880052C199360897 @default.
- W4386880052 hasConceptScore W4386880052C2777704720 @default.
- W4386880052 hasConceptScore W4386880052C2987595161 @default.
- W4386880052 hasConceptScore W4386880052C33923547 @default.
- W4386880052 hasConceptScore W4386880052C41008148 @default.
- W4386880052 hasConceptScore W4386880052C505870484 @default.
- W4386880052 hasConceptScore W4386880052C86803240 @default.
- W4386880052 hasFunder F4320321001 @default.
- W4386880052 hasFunder F4320335777 @default.
- W4386880052 hasIssue "18" @default.
- W4386880052 hasLocation W43868800521 @default.
- W4386880052 hasOpenAccess W4386880052 @default.
- W4386880052 hasPrimaryLocation W43868800521 @default.