Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386880093> ?p ?o ?g. }
Showing items 1 to 79 of
79
with 100 items per page.
- W4386880093 endingPage "317" @default.
- W4386880093 startingPage "304" @default.
- W4386880093 abstract "We study bipartite graph ordering problem, which arises in various domains such as production management, bioinformatics, and job scheduling with precedence constraints. In the bipartite vertex ordering problem, we are given a bipartite graph $$H=(B, S,E)$$ where each vertex in B has a cost and each vertex in S has a profit. The goal is to find a minimum K together with an ordering < of the vertices of H, so that $$i<j$$ whenever $$i in B$$ is adjacent to $$j in S$$ . Moreover, at each sub-order the difference between the costs and profits of the vertices in the sub-order does not exceed K. The bipartite ordering problem is NP-complete when the weights are one, and the bipartite graph H is a bipartite circle graph. This restricted version was used in the study of the secondary structure of RNA in [11]. Thus, we seek exact algorithms for solving the bipartite ordering problem in classes with simpler structures than bipartite circle graphs. We give non-trivial polynomial time algorithms for finding the optimal solutions for bipartite permutation graphs, bipartite trivially perfect graphs, bipartite cographs, and trees. There are still several classes of bipartite graphs for which the ordering problem could be polynomial, such as bipartite interval graphs, bipartite convex graphs, bipartite chordal graphs, etc. In addition, we formulate the problem as a linear programming (LP) model and conduct experiments on random instances. We did not find any example with an integrality gap of two or more when limited to bipartite circle graphs with unit weights. No example with an integrality gap of more than 5/2 was found for arbitrary bipartite graphs with random weights. It would be interesting to investigate the possibility of designing a constant approximation algorithm for this problem." @default.
- W4386880093 created "2023-09-21" @default.
- W4386880093 creator A5037319191 @default.
- W4386880093 creator A5047174859 @default.
- W4386880093 creator A5067970959 @default.
- W4386880093 creator A5092906752 @default.
- W4386880093 date "2023-01-01" @default.
- W4386880093 modified "2023-09-27" @default.
- W4386880093 title "Vertex Ordering with Precedence Constraints" @default.
- W4386880093 cites W120805923 @default.
- W4386880093 cites W1828328674 @default.
- W4386880093 cites W1967966457 @default.
- W4386880093 cites W1988098280 @default.
- W4386880093 cites W1995612793 @default.
- W4386880093 cites W2028556486 @default.
- W4386880093 cites W2033230185 @default.
- W4386880093 cites W2042657610 @default.
- W4386880093 cites W2058023231 @default.
- W4386880093 cites W2076358787 @default.
- W4386880093 cites W2126244322 @default.
- W4386880093 cites W2146959334 @default.
- W4386880093 cites W2151854691 @default.
- W4386880093 cites W2157316274 @default.
- W4386880093 cites W2164408046 @default.
- W4386880093 cites W2165799042 @default.
- W4386880093 cites W2481017292 @default.
- W4386880093 cites W3043435966 @default.
- W4386880093 cites W44682325 @default.
- W4386880093 doi "https://doi.org/10.1007/978-3-031-43587-4_22" @default.
- W4386880093 hasPublicationYear "2023" @default.
- W4386880093 type Work @default.
- W4386880093 citedByCount "0" @default.
- W4386880093 crossrefType "book-chapter" @default.
- W4386880093 hasAuthorship W4386880093A5037319191 @default.
- W4386880093 hasAuthorship W4386880093A5047174859 @default.
- W4386880093 hasAuthorship W4386880093A5067970959 @default.
- W4386880093 hasAuthorship W4386880093A5092906752 @default.
- W4386880093 hasConcept C114614502 @default.
- W4386880093 hasConcept C118615104 @default.
- W4386880093 hasConcept C132525143 @default.
- W4386880093 hasConcept C134119311 @default.
- W4386880093 hasConcept C160446614 @default.
- W4386880093 hasConcept C197657726 @default.
- W4386880093 hasConcept C203776342 @default.
- W4386880093 hasConcept C22149727 @default.
- W4386880093 hasConcept C311688 @default.
- W4386880093 hasConcept C33923547 @default.
- W4386880093 hasConcept C68996132 @default.
- W4386880093 hasConcept C80899671 @default.
- W4386880093 hasConceptScore W4386880093C114614502 @default.
- W4386880093 hasConceptScore W4386880093C118615104 @default.
- W4386880093 hasConceptScore W4386880093C132525143 @default.
- W4386880093 hasConceptScore W4386880093C134119311 @default.
- W4386880093 hasConceptScore W4386880093C160446614 @default.
- W4386880093 hasConceptScore W4386880093C197657726 @default.
- W4386880093 hasConceptScore W4386880093C203776342 @default.
- W4386880093 hasConceptScore W4386880093C22149727 @default.
- W4386880093 hasConceptScore W4386880093C311688 @default.
- W4386880093 hasConceptScore W4386880093C33923547 @default.
- W4386880093 hasConceptScore W4386880093C68996132 @default.
- W4386880093 hasConceptScore W4386880093C80899671 @default.
- W4386880093 hasLocation W43868800931 @default.
- W4386880093 hasOpenAccess W4386880093 @default.
- W4386880093 hasPrimaryLocation W43868800931 @default.
- W4386880093 hasRelatedWork W1988771411 @default.
- W4386880093 hasRelatedWork W1989366892 @default.
- W4386880093 hasRelatedWork W2003436364 @default.
- W4386880093 hasRelatedWork W2040040852 @default.
- W4386880093 hasRelatedWork W2049398763 @default.
- W4386880093 hasRelatedWork W2405987656 @default.
- W4386880093 hasRelatedWork W3100313843 @default.
- W4386880093 hasRelatedWork W4221160330 @default.
- W4386880093 hasRelatedWork W4243953177 @default.
- W4386880093 hasRelatedWork W4286975135 @default.
- W4386880093 isParatext "false" @default.
- W4386880093 isRetracted "false" @default.
- W4386880093 workType "book-chapter" @default.