Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386880752> ?p ?o ?g. }
- W4386880752 endingPage "015009" @default.
- W4386880752 startingPage "015009" @default.
- W4386880752 abstract "Abstract Ramanujan Fourier mode decomposition (RFMD) is a novel non-stationary signal decomposition method, which can decompose a complex signal into several components and extract the periodic characteristics of the signal. However, the mode generation method adopted by RFMD does not consider the physical meaning of the component signal, which makes over-decomposition when dealing with real-life gear signals with complex modulation characteristics, thus destroying the integrity of the signal sideband, increasing the difficulty of subsequent analysis, and even losing key fault information. The iterative envelope-segmentation algorithm combines the modulation characteristics of the local fault gear signal and divides the original signal into a limited number of dominant frequency bands containing the modulation region in the Fourier spectrum, thereby ensuring that the obtained frequency bands contain rich fault information. Based on the above algorithm, a new adaptive decomposition method is proposed in this paper, which is adaptive spectrum segmentation Ramanujan decomposition (ASSRD). ASSRD uses fault envelope harmonic noise ratio as the index to evaluate the fault information content of component signals and uses it to assist the iterative envelope-segmentation algorithm to complete the adaptive segmentation of the Fourier spectrum. Finally, based on the segmentation result, the inverse RFT reconstruction of each frequency band is performed. Thus, the signal is decomposed into a finite number of component signals containing rich fault information. In addition, through the experiment on the gear simulation signal and the measured crack fault gear signal, the ASSRD method is compared with the original RFMD method and the existing ensemble empirical mode decomposition (EMD), variational mode decomposition, empirical wavelet transform, and singular spectrum decomposition method, verifying the feasibility and superiority of ASSRD in gear fault diagnosis. Besides, a comparative experiment based on compound faults diagnosis is carried out, in which ensemble EMD, Fourier decomposition method, empirical wavelet transform, and sparse decomposition are involved. The results show that the proposed method can extract the local fault information in the gear signal more effectively, and the performance is better than the comparison method." @default.
- W4386880752 created "2023-09-21" @default.
- W4386880752 creator A5003590801 @default.
- W4386880752 creator A5033907408 @default.
- W4386880752 creator A5035740532 @default.
- W4386880752 creator A5069433748 @default.
- W4386880752 creator A5091780593 @default.
- W4386880752 date "2023-10-03" @default.
- W4386880752 modified "2023-10-05" @default.
- W4386880752 title "Adaptive Spectrum Segmentation Ramanujan Decomposition and its application to gear fault diagnosis" @default.
- W4386880752 cites W1973176617 @default.
- W4386880752 cites W1985140457 @default.
- W4386880752 cites W1992905402 @default.
- W4386880752 cites W2000982976 @default.
- W4386880752 cites W2019900743 @default.
- W4386880752 cites W2033777252 @default.
- W4386880752 cites W2036037031 @default.
- W4386880752 cites W2063530343 @default.
- W4386880752 cites W2063792958 @default.
- W4386880752 cites W2161219071 @default.
- W4386880752 cites W2207789808 @default.
- W4386880752 cites W2403656097 @default.
- W4386880752 cites W2460920189 @default.
- W4386880752 cites W2620691296 @default.
- W4386880752 cites W2766414400 @default.
- W4386880752 cites W2779615422 @default.
- W4386880752 cites W2808468832 @default.
- W4386880752 cites W2892075914 @default.
- W4386880752 cites W2899285374 @default.
- W4386880752 cites W2947142503 @default.
- W4386880752 cites W2956275351 @default.
- W4386880752 cites W2957277585 @default.
- W4386880752 cites W2963224322 @default.
- W4386880752 cites W2968794923 @default.
- W4386880752 cites W2990778532 @default.
- W4386880752 cites W3011766772 @default.
- W4386880752 cites W3082489270 @default.
- W4386880752 cites W3089500477 @default.
- W4386880752 cites W3094224694 @default.
- W4386880752 cites W3102382472 @default.
- W4386880752 cites W3123482791 @default.
- W4386880752 cites W3198818149 @default.
- W4386880752 cites W4205389954 @default.
- W4386880752 cites W4213100859 @default.
- W4386880752 cites W4213228783 @default.
- W4386880752 cites W4214585209 @default.
- W4386880752 cites W4225543909 @default.
- W4386880752 cites W4294051572 @default.
- W4386880752 cites W4312220535 @default.
- W4386880752 cites W4381059913 @default.
- W4386880752 doi "https://doi.org/10.1088/1361-6501/acfb9d" @default.
- W4386880752 hasPublicationYear "2023" @default.
- W4386880752 type Work @default.
- W4386880752 citedByCount "0" @default.
- W4386880752 crossrefType "journal-article" @default.
- W4386880752 hasAuthorship W4386880752A5003590801 @default.
- W4386880752 hasAuthorship W4386880752A5033907408 @default.
- W4386880752 hasAuthorship W4386880752A5035740532 @default.
- W4386880752 hasAuthorship W4386880752A5069433748 @default.
- W4386880752 hasAuthorship W4386880752A5091780593 @default.
- W4386880752 hasConcept C112633086 @default.
- W4386880752 hasConcept C11413529 @default.
- W4386880752 hasConcept C121332964 @default.
- W4386880752 hasConcept C127313418 @default.
- W4386880752 hasConcept C127934551 @default.
- W4386880752 hasConcept C154945302 @default.
- W4386880752 hasConcept C165205528 @default.
- W4386880752 hasConcept C175551986 @default.
- W4386880752 hasConcept C199360897 @default.
- W4386880752 hasConcept C24890656 @default.
- W4386880752 hasConcept C25570617 @default.
- W4386880752 hasConcept C2779843651 @default.
- W4386880752 hasConcept C41008148 @default.
- W4386880752 hasConcept C554190296 @default.
- W4386880752 hasConcept C65155139 @default.
- W4386880752 hasConcept C76155785 @default.
- W4386880752 hasConcept C89600930 @default.
- W4386880752 hasConceptScore W4386880752C112633086 @default.
- W4386880752 hasConceptScore W4386880752C11413529 @default.
- W4386880752 hasConceptScore W4386880752C121332964 @default.
- W4386880752 hasConceptScore W4386880752C127313418 @default.
- W4386880752 hasConceptScore W4386880752C127934551 @default.
- W4386880752 hasConceptScore W4386880752C154945302 @default.
- W4386880752 hasConceptScore W4386880752C165205528 @default.
- W4386880752 hasConceptScore W4386880752C175551986 @default.
- W4386880752 hasConceptScore W4386880752C199360897 @default.
- W4386880752 hasConceptScore W4386880752C24890656 @default.
- W4386880752 hasConceptScore W4386880752C25570617 @default.
- W4386880752 hasConceptScore W4386880752C2779843651 @default.
- W4386880752 hasConceptScore W4386880752C41008148 @default.
- W4386880752 hasConceptScore W4386880752C554190296 @default.
- W4386880752 hasConceptScore W4386880752C65155139 @default.
- W4386880752 hasConceptScore W4386880752C76155785 @default.
- W4386880752 hasConceptScore W4386880752C89600930 @default.
- W4386880752 hasFunder F4320321001 @default.
- W4386880752 hasIssue "1" @default.
- W4386880752 hasLocation W43868807521 @default.
- W4386880752 hasOpenAccess W4386880752 @default.