Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386882043> ?p ?o ?g. }
Showing items 1 to 86 of
86
with 100 items per page.
- W4386882043 abstract "Objective Brain metastases (BM) are associated with poor prognosis and increased mortality rates, making them a significant clinical challenge. Therefore, studying BMs can aid in developing better diagnostic tools for their early detection and monitoring. Systematic comparisons of anatomical distributions of BM from different primary cancers, however, remain largely unavailable. Methods To test the hypothesis that anatomical BM distributions differ based on primary cancer type, we analyze the spatial coordinates of BMs for five different primary cancer types along principal component (PC) axes which optimizes their largest spread along each of the three PC axes. Data used in this analysis is taken from the International Radiosurgery Research Foundation (IRRF) and all patients underwent gamma-knife radiosurgery (GKRS) for the treatment of BMs which are labeled based on the primary cancer types Breast, Lung, Melanoma, Renal, and Colon. The dataset consists of six features including sex, age, target volume, and stereotactic Cartesian coordinates X, Y, and Z of a total of 3949 intracranial metastases. We employ PC coordinates to reduce the dimensionality of our dataset and highlight the distinctions in the anatomical spread of BMs between various cancer types. We utilized different Machine Learning (ML) algorithms: Random Forest (RF), Support Vector Machine (SVM), and TabNet Deep Learning (DL) model to establish the relationship between primary cancer diagnosis, spatial coordinates of BMs, age, and target volume. Results Our findings demonstrate that the first principal component (PC1) exhibits a greater alignment with the Y axis, followed by the Z axis, with a minimal correlation observed with the X axis. Based on our analysis of the PC1 versus PC2 plots, we have determined that the pairs of Breast and Lung cancer, as well as Breast and Renal cancer, exhibit the most notable distinctions in their anatomical spreading patterns. In contrast, we find that the pairs of Renal and Lung cancer, as well as Lung and Melanoma, were most similar in their patterns. Our ML and DL results indicate high accuracy in distinguishing the distribution of BM for different primary cancers, with the SVM algorithm achieving a 97% accuracy rate when using a polynomial kernel and TabNet a 96% accuracy. The RF algorithm ranks PC1 as the most important discriminating feature. Conclusions Taken together, the results demonstrate an accurate multiclass machine learning classification with respect to the distribution of brain metastases." @default.
- W4386882043 created "2023-09-21" @default.
- W4386882043 creator A5003429104 @default.
- W4386882043 creator A5005639646 @default.
- W4386882043 creator A5025139045 @default.
- W4386882043 creator A5036013545 @default.
- W4386882043 creator A5049156060 @default.
- W4386882043 creator A5076385474 @default.
- W4386882043 creator A5085362780 @default.
- W4386882043 date "2023-09-20" @default.
- W4386882043 modified "2023-09-30" @default.
- W4386882043 title "Comparative analysis of the spatial distribution of brain metastases across several primary cancers using machine learning and deep learning models" @default.
- W4386882043 cites W2067741159 @default.
- W4386882043 cites W2076769486 @default.
- W4386882043 cites W2086495977 @default.
- W4386882043 cites W2135212506 @default.
- W4386882043 cites W2137476312 @default.
- W4386882043 cites W2150508753 @default.
- W4386882043 cites W2194775991 @default.
- W4386882043 cites W2734876944 @default.
- W4386882043 cites W2911964244 @default.
- W4386882043 cites W3006845597 @default.
- W4386882043 cites W3033382214 @default.
- W4386882043 cites W3217093718 @default.
- W4386882043 cites W4306361728 @default.
- W4386882043 doi "https://doi.org/10.1101/2023.09.19.23295748" @default.
- W4386882043 hasPublicationYear "2023" @default.
- W4386882043 type Work @default.
- W4386882043 citedByCount "0" @default.
- W4386882043 crossrefType "posted-content" @default.
- W4386882043 hasAuthorship W4386882043A5003429104 @default.
- W4386882043 hasAuthorship W4386882043A5005639646 @default.
- W4386882043 hasAuthorship W4386882043A5025139045 @default.
- W4386882043 hasAuthorship W4386882043A5036013545 @default.
- W4386882043 hasAuthorship W4386882043A5049156060 @default.
- W4386882043 hasAuthorship W4386882043A5076385474 @default.
- W4386882043 hasAuthorship W4386882043A5085362780 @default.
- W4386882043 hasBestOaLocation W43868820431 @default.
- W4386882043 hasConcept C119857082 @default.
- W4386882043 hasConcept C121608353 @default.
- W4386882043 hasConcept C12267149 @default.
- W4386882043 hasConcept C126322002 @default.
- W4386882043 hasConcept C153180895 @default.
- W4386882043 hasConcept C154945302 @default.
- W4386882043 hasConcept C194226119 @default.
- W4386882043 hasConcept C27438332 @default.
- W4386882043 hasConcept C2776256026 @default.
- W4386882043 hasConcept C2779013556 @default.
- W4386882043 hasConcept C2780283643 @default.
- W4386882043 hasConcept C2780387249 @default.
- W4386882043 hasConcept C41008148 @default.
- W4386882043 hasConcept C509974204 @default.
- W4386882043 hasConcept C530470458 @default.
- W4386882043 hasConcept C71924100 @default.
- W4386882043 hasConceptScore W4386882043C119857082 @default.
- W4386882043 hasConceptScore W4386882043C121608353 @default.
- W4386882043 hasConceptScore W4386882043C12267149 @default.
- W4386882043 hasConceptScore W4386882043C126322002 @default.
- W4386882043 hasConceptScore W4386882043C153180895 @default.
- W4386882043 hasConceptScore W4386882043C154945302 @default.
- W4386882043 hasConceptScore W4386882043C194226119 @default.
- W4386882043 hasConceptScore W4386882043C27438332 @default.
- W4386882043 hasConceptScore W4386882043C2776256026 @default.
- W4386882043 hasConceptScore W4386882043C2779013556 @default.
- W4386882043 hasConceptScore W4386882043C2780283643 @default.
- W4386882043 hasConceptScore W4386882043C2780387249 @default.
- W4386882043 hasConceptScore W4386882043C41008148 @default.
- W4386882043 hasConceptScore W4386882043C509974204 @default.
- W4386882043 hasConceptScore W4386882043C530470458 @default.
- W4386882043 hasConceptScore W4386882043C71924100 @default.
- W4386882043 hasLocation W43868820431 @default.
- W4386882043 hasOpenAccess W4386882043 @default.
- W4386882043 hasPrimaryLocation W43868820431 @default.
- W4386882043 hasRelatedWork W1579270119 @default.
- W4386882043 hasRelatedWork W2008326590 @default.
- W4386882043 hasRelatedWork W2029718921 @default.
- W4386882043 hasRelatedWork W2085553065 @default.
- W4386882043 hasRelatedWork W2358824780 @default.
- W4386882043 hasRelatedWork W2366390874 @default.
- W4386882043 hasRelatedWork W2380927352 @default.
- W4386882043 hasRelatedWork W3178621026 @default.
- W4386882043 hasRelatedWork W2137598809 @default.
- W4386882043 hasRelatedWork W2345184372 @default.
- W4386882043 isParatext "false" @default.
- W4386882043 isRetracted "false" @default.
- W4386882043 workType "article" @default.