Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386887693> ?p ?o ?g. }
- W4386887693 abstract "<sec> <title>BACKGROUND</title> Biomedical relation extraction (RE) is of great importance for researchers to conduct systematic biomedical studies. It not only helps knowledge mining, such as knowledge graphs and novel knowledge discovery, but also promotes translational applications, such as clinical diagnosis, decision-making, and precision medicine. However, the relations between biomedical entities are complex and diverse, and comprehensive biomedical RE is not yet well established. </sec> <sec> <title>OBJECTIVE</title> We aimed to investigate and improve large-scale RE with diverse relation types and conduct usability studies with application scenarios to optimize biomedical text mining. </sec> <sec> <title>METHODS</title> Data sets containing 125 relation types with different entity semantic levels were constructed to evaluate the impact of entity semantic information on RE, and performance analysis was conducted on different model architectures and domain models. This study also proposed a continued pretraining strategy and integrated models with scripts into a tool. Furthermore, this study applied RE to the COVID-19 corpus with article topics and application scenarios of clinical interest to assess and demonstrate its biological interpretability and usability. </sec> <sec> <title>RESULTS</title> The performance analysis revealed that RE achieves the best performance when the detailed semantic type is provided. For a single model, PubMedBERT with continued pretraining performed the best, with an F1-score of 0.8998. Usability studies on COVID-19 demonstrated the interpretability and usability of RE, and a relation graph database was constructed, which was used to reveal existing and novel drug paths with edge explanations. The models (including pretrained and fine-tuned models), integrated tool (Docker), and generated data (including the COVID-19 relation graph database and drug paths) have been made publicly available to the biomedical text mining community and clinical researchers. </sec> <sec> <title>CONCLUSIONS</title> This study provided a comprehensive analysis of RE with diverse relation types. Optimized RE models and tools for diverse relation types were developed, which can be widely used in biomedical text mining. Our usability studies provided a proof-of-concept demonstration of how large-scale RE can be leveraged to facilitate novel research. </sec>" @default.
- W4386887693 created "2023-09-21" @default.
- W4386887693 creator A5016659420 @default.
- W4386887693 creator A5021291863 @default.
- W4386887693 creator A5023723152 @default.
- W4386887693 creator A5027938645 @default.
- W4386887693 creator A5031738305 @default.
- W4386887693 creator A5039611299 @default.
- W4386887693 creator A5040755577 @default.
- W4386887693 creator A5047160583 @default.
- W4386887693 creator A5049849594 @default.
- W4386887693 creator A5068379834 @default.
- W4386887693 creator A5078090478 @default.
- W4386887693 creator A5086091170 @default.
- W4386887693 date "2023-04-11" @default.
- W4386887693 modified "2023-09-27" @default.
- W4386887693 title "Large-Scale Biomedical Relation Extraction Across Diverse Relation Types: Model Development and Usability Study on COVID-19 (Preprint)" @default.
- W4386887693 cites W1571973017 @default.
- W4386887693 cites W1964670939 @default.
- W4386887693 cites W2007602343 @default.
- W4386887693 cites W2030017828 @default.
- W4386887693 cites W2048296798 @default.
- W4386887693 cites W2060888586 @default.
- W4386887693 cites W2067704478 @default.
- W4386887693 cites W2095807050 @default.
- W4386887693 cites W2107761256 @default.
- W4386887693 cites W2122904379 @default.
- W4386887693 cites W2145870108 @default.
- W4386887693 cites W2148283536 @default.
- W4386887693 cites W2159583324 @default.
- W4386887693 cites W2165128851 @default.
- W4386887693 cites W2170189740 @default.
- W4386887693 cites W2335791510 @default.
- W4386887693 cites W2485374661 @default.
- W4386887693 cites W2517024156 @default.
- W4386887693 cites W2765742249 @default.
- W4386887693 cites W2888329843 @default.
- W4386887693 cites W2893364991 @default.
- W4386887693 cites W2910442120 @default.
- W4386887693 cites W2911489562 @default.
- W4386887693 cites W2946690328 @default.
- W4386887693 cites W2952179106 @default.
- W4386887693 cites W2963716420 @default.
- W4386887693 cites W2970771982 @default.
- W4386887693 cites W2971258845 @default.
- W4386887693 cites W2979826702 @default.
- W4386887693 cites W2997200074 @default.
- W4386887693 cites W3005212621 @default.
- W4386887693 cites W3010673910 @default.
- W4386887693 cites W3033896008 @default.
- W4386887693 cites W3034238904 @default.
- W4386887693 cites W3046375318 @default.
- W4386887693 cites W3105753785 @default.
- W4386887693 cites W3111301126 @default.
- W4386887693 cites W3121601851 @default.
- W4386887693 cites W3160453222 @default.
- W4386887693 cites W3166204619 @default.
- W4386887693 cites W3174753721 @default.
- W4386887693 doi "https://doi.org/10.2196/preprints.48115" @default.
- W4386887693 hasPublicationYear "2023" @default.
- W4386887693 type Work @default.
- W4386887693 citedByCount "0" @default.
- W4386887693 crossrefType "posted-content" @default.
- W4386887693 hasAuthorship W4386887693A5016659420 @default.
- W4386887693 hasAuthorship W4386887693A5021291863 @default.
- W4386887693 hasAuthorship W4386887693A5023723152 @default.
- W4386887693 hasAuthorship W4386887693A5027938645 @default.
- W4386887693 hasAuthorship W4386887693A5031738305 @default.
- W4386887693 hasAuthorship W4386887693A5039611299 @default.
- W4386887693 hasAuthorship W4386887693A5040755577 @default.
- W4386887693 hasAuthorship W4386887693A5047160583 @default.
- W4386887693 hasAuthorship W4386887693A5049849594 @default.
- W4386887693 hasAuthorship W4386887693A5068379834 @default.
- W4386887693 hasAuthorship W4386887693A5078090478 @default.
- W4386887693 hasAuthorship W4386887693A5086091170 @default.
- W4386887693 hasConcept C107457646 @default.
- W4386887693 hasConcept C124101348 @default.
- W4386887693 hasConcept C153604712 @default.
- W4386887693 hasConcept C154945302 @default.
- W4386887693 hasConcept C170130773 @default.
- W4386887693 hasConcept C23123220 @default.
- W4386887693 hasConcept C2522767166 @default.
- W4386887693 hasConcept C25343380 @default.
- W4386887693 hasConcept C2781067378 @default.
- W4386887693 hasConcept C41008148 @default.
- W4386887693 hasConceptScore W4386887693C107457646 @default.
- W4386887693 hasConceptScore W4386887693C124101348 @default.
- W4386887693 hasConceptScore W4386887693C153604712 @default.
- W4386887693 hasConceptScore W4386887693C154945302 @default.
- W4386887693 hasConceptScore W4386887693C170130773 @default.
- W4386887693 hasConceptScore W4386887693C23123220 @default.
- W4386887693 hasConceptScore W4386887693C2522767166 @default.
- W4386887693 hasConceptScore W4386887693C25343380 @default.
- W4386887693 hasConceptScore W4386887693C2781067378 @default.
- W4386887693 hasConceptScore W4386887693C41008148 @default.
- W4386887693 hasLocation W43868876931 @default.
- W4386887693 hasOpenAccess W4386887693 @default.
- W4386887693 hasPrimaryLocation W43868876931 @default.
- W4386887693 hasRelatedWork W2100369842 @default.
- W4386887693 hasRelatedWork W2609844752 @default.