Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386890545> ?p ?o ?g. }
- W4386890545 abstract "Abstract Background Drug-target binding affinity (DTA) prediction is important for the rapid development of drug discovery. Compared to traditional methods, deep learning methods provide a new way for DTA prediction to achieve good performance without much knowledge of the biochemical background. However, there are still room for improvement in DTA prediction: (1) only focusing on the information of the atom leads to an incomplete representation of the molecular graph; (2) the self-supervised learning method could be introduced for protein representation. Results In this paper, a DTA prediction model using the deep learning method is proposed, which uses an undirected-CMPNN for molecular embedding and combines CPCProt and MLM models for protein embedding. An attention mechanism is introduced to discover the important part of the protein sequence. The proposed method is evaluated on the datasets Ki and Davis, and the model outperformed other deep learning methods. Conclusions The proposed model improves the performance of the DTA prediction, which provides a novel strategy for deep learning-based virtual screening methods." @default.
- W4386890545 created "2023-09-21" @default.
- W4386890545 creator A5042358107 @default.
- W4386890545 creator A5052523004 @default.
- W4386890545 creator A5067606952 @default.
- W4386890545 creator A5072206276 @default.
- W4386890545 creator A5089027946 @default.
- W4386890545 creator A5089948712 @default.
- W4386890545 date "2023-09-20" @default.
- W4386890545 modified "2023-10-08" @default.
- W4386890545 title "Drug-target binding affinity prediction using message passing neural network and self supervised learning" @default.
- W4386890545 cites W1975147762 @default.
- W4386890545 cites W2076048958 @default.
- W4386890545 cites W2086286404 @default.
- W4386890545 cites W2096864392 @default.
- W4386890545 cites W2109991441 @default.
- W4386890545 cites W2136922672 @default.
- W4386890545 cites W2767891136 @default.
- W4386890545 cites W2893316328 @default.
- W4386890545 cites W3034516664 @default.
- W4386890545 cites W3083386021 @default.
- W4386890545 cites W3088849005 @default.
- W4386890545 cites W3096561213 @default.
- W4386890545 cites W3100848837 @default.
- W4386890545 cites W3115702157 @default.
- W4386890545 cites W3129155125 @default.
- W4386890545 cites W3137962378 @default.
- W4386890545 cites W3138896806 @default.
- W4386890545 cites W3146366485 @default.
- W4386890545 cites W3159276577 @default.
- W4386890545 cites W3196892661 @default.
- W4386890545 cites W3201055938 @default.
- W4386890545 cites W4205167309 @default.
- W4386890545 cites W4229074155 @default.
- W4386890545 cites W4283010692 @default.
- W4386890545 cites W4297179162 @default.
- W4386890545 cites W4307171284 @default.
- W4386890545 cites W4319999782 @default.
- W4386890545 doi "https://doi.org/10.1186/s12864-023-09664-z" @default.
- W4386890545 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37730555" @default.
- W4386890545 hasPublicationYear "2023" @default.
- W4386890545 type Work @default.
- W4386890545 citedByCount "0" @default.
- W4386890545 crossrefType "journal-article" @default.
- W4386890545 hasAuthorship W4386890545A5042358107 @default.
- W4386890545 hasAuthorship W4386890545A5052523004 @default.
- W4386890545 hasAuthorship W4386890545A5067606952 @default.
- W4386890545 hasAuthorship W4386890545A5072206276 @default.
- W4386890545 hasAuthorship W4386890545A5089027946 @default.
- W4386890545 hasAuthorship W4386890545A5089948712 @default.
- W4386890545 hasBestOaLocation W43868905451 @default.
- W4386890545 hasConcept C103697762 @default.
- W4386890545 hasConcept C108583219 @default.
- W4386890545 hasConcept C119857082 @default.
- W4386890545 hasConcept C124101348 @default.
- W4386890545 hasConcept C153180895 @default.
- W4386890545 hasConcept C154945302 @default.
- W4386890545 hasConcept C17744445 @default.
- W4386890545 hasConcept C199539241 @default.
- W4386890545 hasConcept C2776359362 @default.
- W4386890545 hasConcept C2989108626 @default.
- W4386890545 hasConcept C41008148 @default.
- W4386890545 hasConcept C41608201 @default.
- W4386890545 hasConcept C50644808 @default.
- W4386890545 hasConcept C60644358 @default.
- W4386890545 hasConcept C74187038 @default.
- W4386890545 hasConcept C86803240 @default.
- W4386890545 hasConcept C94625758 @default.
- W4386890545 hasConcept C98274493 @default.
- W4386890545 hasConceptScore W4386890545C103697762 @default.
- W4386890545 hasConceptScore W4386890545C108583219 @default.
- W4386890545 hasConceptScore W4386890545C119857082 @default.
- W4386890545 hasConceptScore W4386890545C124101348 @default.
- W4386890545 hasConceptScore W4386890545C153180895 @default.
- W4386890545 hasConceptScore W4386890545C154945302 @default.
- W4386890545 hasConceptScore W4386890545C17744445 @default.
- W4386890545 hasConceptScore W4386890545C199539241 @default.
- W4386890545 hasConceptScore W4386890545C2776359362 @default.
- W4386890545 hasConceptScore W4386890545C2989108626 @default.
- W4386890545 hasConceptScore W4386890545C41008148 @default.
- W4386890545 hasConceptScore W4386890545C41608201 @default.
- W4386890545 hasConceptScore W4386890545C50644808 @default.
- W4386890545 hasConceptScore W4386890545C60644358 @default.
- W4386890545 hasConceptScore W4386890545C74187038 @default.
- W4386890545 hasConceptScore W4386890545C86803240 @default.
- W4386890545 hasConceptScore W4386890545C94625758 @default.
- W4386890545 hasConceptScore W4386890545C98274493 @default.
- W4386890545 hasIssue "1" @default.
- W4386890545 hasLocation W43868905451 @default.
- W4386890545 hasLocation W43868905452 @default.
- W4386890545 hasOpenAccess W4386890545 @default.
- W4386890545 hasPrimaryLocation W43868905451 @default.
- W4386890545 hasRelatedWork W2795261237 @default.
- W4386890545 hasRelatedWork W3014300295 @default.
- W4386890545 hasRelatedWork W3164822677 @default.
- W4386890545 hasRelatedWork W4223943233 @default.
- W4386890545 hasRelatedWork W4225161397 @default.
- W4386890545 hasRelatedWork W4312200629 @default.
- W4386890545 hasRelatedWork W4360585206 @default.
- W4386890545 hasRelatedWork W4364306694 @default.