Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386892804> ?p ?o ?g. }
Showing items 1 to 75 of
75
with 100 items per page.
- W4386892804 abstract "Road accidents have been progressively causing havoc in our society and certain preventive measures must be taken to reduce or possibly eliminate road accidents. The derivative of a road accident ranges from a mild injury to casualty. This research work mainly focusses on developing a novel case-based reasoning system to investigate and troubleshoot the cause of road accidents on a war-foot basis. First, the dominant attributes contributing to the cause of road accidents are identified and finalized as 28. A unique road accident dataset is developed which comprises of 1028 data collected from web resources, popular news magazines and extended further to large scale database of one-million cases by biased random number simulation. Each attribute is given a severity weightage of 1,2 and 3 for computing the net weighted score for a case in the database. Also, non-weighted scores are computed by introduction of a primary number dataset to maintain the uniqueness of the score which is further used for similarity analytics. Now, an accident news is randomly selected, and Rapid automatic keyword extraction (RAKE) schema is used as Natural language processor (NLP) for extracting the dominant keywords from the news articles. The extracted keywords are compared and further mapped into a factor-matrix comprising 28 attributes causing road accidents. Further, similarity analytics is performed to evaluate the severity scores and comparison of new cases. The system demonstrated high retrieval accuracy with all road accident cases collected from real world scenarios. This research has great prospects on troubleshooting road accident cases effectively and provides instant promising troubleshooting measures to prevent such accidents in the future. Also, the proposed framework might be useful for intelligent decision-making systems and automated driving systems. Based on the final outlook, a comprehensive framework for national road safety could be developed and passed as a valid law for implementation. Finally, the forecasted results of the proposed algorithm are compared with the predictions of Chat GPT program." @default.
- W4386892804 created "2023-09-21" @default.
- W4386892804 creator A5050151322 @default.
- W4386892804 creator A5050785190 @default.
- W4386892804 creator A5085552191 @default.
- W4386892804 creator A5087371926 @default.
- W4386892804 date "2023-09-01" @default.
- W4386892804 modified "2023-09-30" @default.
- W4386892804 title "An Artificial Intelligence based automated Case-based reasoning (CBR) system for severity investigation and root-cause analysis of road accidents – comparative analysis with the predictions of ChatGPT" @default.
- W4386892804 cites W1979691980 @default.
- W4386892804 cites W1984282071 @default.
- W4386892804 cites W2044398512 @default.
- W4386892804 cites W2887878276 @default.
- W4386892804 cites W2900601594 @default.
- W4386892804 cites W2960869366 @default.
- W4386892804 cites W2969305541 @default.
- W4386892804 cites W3101635439 @default.
- W4386892804 cites W3171429580 @default.
- W4386892804 cites W3203925970 @default.
- W4386892804 cites W3217459514 @default.
- W4386892804 cites W4205269036 @default.
- W4386892804 cites W4220845816 @default.
- W4386892804 cites W4225127971 @default.
- W4386892804 cites W4225726046 @default.
- W4386892804 cites W4281608407 @default.
- W4386892804 cites W4283577476 @default.
- W4386892804 cites W4283781001 @default.
- W4386892804 cites W4285138366 @default.
- W4386892804 cites W4290973328 @default.
- W4386892804 cites W4297991933 @default.
- W4386892804 cites W4301368493 @default.
- W4386892804 cites W4321605784 @default.
- W4386892804 cites W4323050341 @default.
- W4386892804 doi "https://doi.org/10.1016/j.jer.2023.09.019" @default.
- W4386892804 hasPublicationYear "2023" @default.
- W4386892804 type Work @default.
- W4386892804 citedByCount "0" @default.
- W4386892804 crossrefType "journal-article" @default.
- W4386892804 hasAuthorship W4386892804A5050151322 @default.
- W4386892804 hasAuthorship W4386892804A5050785190 @default.
- W4386892804 hasAuthorship W4386892804A5085552191 @default.
- W4386892804 hasAuthorship W4386892804A5087371926 @default.
- W4386892804 hasBestOaLocation W43868928041 @default.
- W4386892804 hasConcept C111919701 @default.
- W4386892804 hasConcept C127413603 @default.
- W4386892804 hasConcept C147494362 @default.
- W4386892804 hasConcept C154945302 @default.
- W4386892804 hasConcept C20162079 @default.
- W4386892804 hasConcept C21547014 @default.
- W4386892804 hasConcept C41008148 @default.
- W4386892804 hasConcept C84945661 @default.
- W4386892804 hasConceptScore W4386892804C111919701 @default.
- W4386892804 hasConceptScore W4386892804C127413603 @default.
- W4386892804 hasConceptScore W4386892804C147494362 @default.
- W4386892804 hasConceptScore W4386892804C154945302 @default.
- W4386892804 hasConceptScore W4386892804C20162079 @default.
- W4386892804 hasConceptScore W4386892804C21547014 @default.
- W4386892804 hasConceptScore W4386892804C41008148 @default.
- W4386892804 hasConceptScore W4386892804C84945661 @default.
- W4386892804 hasLocation W43868928041 @default.
- W4386892804 hasOpenAccess W4386892804 @default.
- W4386892804 hasPrimaryLocation W43868928041 @default.
- W4386892804 hasRelatedWork W1576211907 @default.
- W4386892804 hasRelatedWork W2043926798 @default.
- W4386892804 hasRelatedWork W2073355499 @default.
- W4386892804 hasRelatedWork W2133441575 @default.
- W4386892804 hasRelatedWork W2365235076 @default.
- W4386892804 hasRelatedWork W2478816384 @default.
- W4386892804 hasRelatedWork W2484136181 @default.
- W4386892804 hasRelatedWork W2997961747 @default.
- W4386892804 hasRelatedWork W4206490933 @default.
- W4386892804 hasRelatedWork W68598348 @default.
- W4386892804 isParatext "false" @default.
- W4386892804 isRetracted "false" @default.
- W4386892804 workType "article" @default.