Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386894017> ?p ?o ?g. }
- W4386894017 endingPage "10464" @default.
- W4386894017 startingPage "10464" @default.
- W4386894017 abstract "Ensuring food security has become of paramount importance due to the rising global population. In particular, the agriculture sector in South Korea faces several challenges such as an aging farming population and a decline in the labor force. These issues have led to the recognition of smart farms as a potential solution. In South Korea, the smart farm is divided into three generations. The first generation primarily concentrates on monitoring and controlling precise cultivation environments by leveraging information and communication technologies (ICT). This is aimed at enhancing convenience for farmers. Moving on to the second generation, it takes advantage of big data and artificial intelligence (AI) to achieve improved productivity. This is achieved through precise cultivation management and automated control of various farming processes. The most advanced level is the 3rd generation, which represents an intelligent robotic farm. In this stage, the entire farming process is autonomously managed without the need for human intervention. This is made possible through energy management systems and the use of robots for various farm operations. However, in the current Korean context, the adoption of smart farms is primarily limited to the first generation, resulting in the limited utilization of advanced technologies such as AI, big data, and cloud computing. Therefore, this research aims to develop the second generation of smart farms within the first generation smart farm environment. To accomplish this, data was collected from nine sensors spanning the period between 20 June to 30 September. Following that, we conducted kernel density estimation analysis, data analysis, and correlation heatmap analysis based on the collected data. Subsequently, we utilized LSTM, BI-LSTM, and GRU as base models to construct a stacking ensemble model. To assess the performance of the proposed model based on the analyzed results, we utilized LSTM, BI-LSTM, and GRU as the existing models. As a result, the stacking ensemble model outperformed LSTM, BI-LSTM, and GRU in all performance metrics for predicting one of the sensor data variables, air temperature. However, this study collected nine sensor data over a relatively short period of three months. Therefore, there is a limitation in terms of considering the long-term data collection and analysis that accounts for the unique seasonal characteristics of Korea. Additionally, the challenge of including various environmental factors influencing crops beyond the nine sensors and conducting experiments in diverse cultivation environments with different crops for model generalization remains. In the future, we plan to address these limitations by extending the data collection period, acquiring diverse additional sensor data, and conducting further research that considers various environmental variables." @default.
- W4386894017 created "2023-09-21" @default.
- W4386894017 creator A5006992063 @default.
- W4386894017 creator A5079119928 @default.
- W4386894017 creator A5086243952 @default.
- W4386894017 date "2023-09-19" @default.
- W4386894017 modified "2023-09-27" @default.
- W4386894017 title "Prediction of Sensor Data in a Greenhouse for Cultivation of Paprika Plants Using a Stacking Ensemble for Smart Farms" @default.
- W4386894017 cites W2765421612 @default.
- W4386894017 cites W2785421685 @default.
- W4386894017 cites W2793350103 @default.
- W4386894017 cites W2889552320 @default.
- W4386894017 cites W2901108539 @default.
- W4386894017 cites W2904462474 @default.
- W4386894017 cites W2971168258 @default.
- W4386894017 cites W2979650406 @default.
- W4386894017 cites W2979950223 @default.
- W4386894017 cites W2980434023 @default.
- W4386894017 cites W2981581709 @default.
- W4386894017 cites W2984455290 @default.
- W4386894017 cites W2990597424 @default.
- W4386894017 cites W2991198822 @default.
- W4386894017 cites W2996218582 @default.
- W4386894017 cites W2999309192 @default.
- W4386894017 cites W3007075806 @default.
- W4386894017 cites W3008496980 @default.
- W4386894017 cites W3011249753 @default.
- W4386894017 cites W3012207568 @default.
- W4386894017 cites W3016414288 @default.
- W4386894017 cites W3019251610 @default.
- W4386894017 cites W3034133373 @default.
- W4386894017 cites W3037352346 @default.
- W4386894017 cites W3048522289 @default.
- W4386894017 cites W3103517394 @default.
- W4386894017 cites W3112840199 @default.
- W4386894017 cites W3133181227 @default.
- W4386894017 cites W3155397358 @default.
- W4386894017 cites W3164354402 @default.
- W4386894017 cites W3170851865 @default.
- W4386894017 cites W3173471016 @default.
- W4386894017 cites W3182706339 @default.
- W4386894017 cites W3194223064 @default.
- W4386894017 cites W3198206641 @default.
- W4386894017 cites W3201423477 @default.
- W4386894017 cites W3206850193 @default.
- W4386894017 cites W4200371164 @default.
- W4386894017 cites W4200488444 @default.
- W4386894017 cites W4205437586 @default.
- W4386894017 cites W4206286262 @default.
- W4386894017 cites W4220933766 @default.
- W4386894017 cites W4221038774 @default.
- W4386894017 cites W4226060831 @default.
- W4386894017 cites W4281616793 @default.
- W4386894017 cites W4284663308 @default.
- W4386894017 cites W4289546782 @default.
- W4386894017 cites W4295062684 @default.
- W4386894017 cites W4307269446 @default.
- W4386894017 cites W4308842075 @default.
- W4386894017 cites W4320729345 @default.
- W4386894017 cites W4366283456 @default.
- W4386894017 cites W4366684515 @default.
- W4386894017 cites W4385619244 @default.
- W4386894017 doi "https://doi.org/10.3390/app131810464" @default.
- W4386894017 hasPublicationYear "2023" @default.
- W4386894017 type Work @default.
- W4386894017 citedByCount "0" @default.
- W4386894017 crossrefType "journal-article" @default.
- W4386894017 hasAuthorship W4386894017A5006992063 @default.
- W4386894017 hasAuthorship W4386894017A5079119928 @default.
- W4386894017 hasAuthorship W4386894017A5086243952 @default.
- W4386894017 hasBestOaLocation W43868940171 @default.
- W4386894017 hasConcept C111919701 @default.
- W4386894017 hasConcept C118518473 @default.
- W4386894017 hasConcept C124101348 @default.
- W4386894017 hasConcept C127413603 @default.
- W4386894017 hasConcept C136764020 @default.
- W4386894017 hasConcept C144024400 @default.
- W4386894017 hasConcept C144133560 @default.
- W4386894017 hasConcept C149923435 @default.
- W4386894017 hasConcept C162324750 @default.
- W4386894017 hasConcept C166957645 @default.
- W4386894017 hasConcept C204983608 @default.
- W4386894017 hasConcept C205649164 @default.
- W4386894017 hasConcept C2779343474 @default.
- W4386894017 hasConcept C2908647359 @default.
- W4386894017 hasConcept C41008148 @default.
- W4386894017 hasConcept C50522688 @default.
- W4386894017 hasConcept C67363961 @default.
- W4386894017 hasConcept C75684735 @default.
- W4386894017 hasConcept C79974875 @default.
- W4386894017 hasConcept C88463610 @default.
- W4386894017 hasConceptScore W4386894017C111919701 @default.
- W4386894017 hasConceptScore W4386894017C118518473 @default.
- W4386894017 hasConceptScore W4386894017C124101348 @default.
- W4386894017 hasConceptScore W4386894017C127413603 @default.
- W4386894017 hasConceptScore W4386894017C136764020 @default.
- W4386894017 hasConceptScore W4386894017C144024400 @default.
- W4386894017 hasConceptScore W4386894017C144133560 @default.