Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386894037> ?p ?o ?g. }
Showing items 1 to 96 of
96
with 100 items per page.
- W4386894037 endingPage "10458" @default.
- W4386894037 startingPage "10458" @default.
- W4386894037 abstract "Deep learning has undergone significant progress for machinery fault diagnosis in the Industrial Internet of Things; however, it requires a substantial amount of labeled data. The lack of sufficient fault samples in practical applications remains a challenge. One feasible approach is to leverage prior knowledge from similar source domains to enhance fault diagnosis with limited samples in the target domain. Nevertheless, complex operating conditions and fault types can give rise to domain shift issues between different domains, therefore hindering direct data-sharing due to data privacy concerns. To address these challenges, this article introduces a novel federated few-shot fault-diagnosis method called FedCDAE-MN. FedCDAE-MN employs a convolutional denoising auto-encoder and feature-space metric learning to enhance the model’s generalization across domains for improving the adaptability to varying working conditions, new fault types, and noisy data. Moreover, our approach ensures privacy preservation by avoiding the need to share sensitive data with other participants. Through extensive experiments on real-world datasets, FedCDAE-MN surpasses existing methods and significantly improves the accuracy of fault diagnosis." @default.
- W4386894037 created "2023-09-21" @default.
- W4386894037 creator A5001968972 @default.
- W4386894037 creator A5010106841 @default.
- W4386894037 creator A5022677475 @default.
- W4386894037 date "2023-09-19" @default.
- W4386894037 modified "2023-09-27" @default.
- W4386894037 title "Federated Few-Shot Learning-Based Machinery Fault Diagnosis in the Industrial Internet of Things" @default.
- W4386894037 cites W2093598546 @default.
- W4386894037 cites W2139833307 @default.
- W4386894037 cites W2160987092 @default.
- W4386894037 cites W2791517499 @default.
- W4386894037 cites W2912412749 @default.
- W4386894037 cites W2927744156 @default.
- W4386894037 cites W2964156143 @default.
- W4386894037 cites W2967115638 @default.
- W4386894037 cites W2985646593 @default.
- W4386894037 cites W2987480074 @default.
- W4386894037 cites W2990705538 @default.
- W4386894037 cites W2997327857 @default.
- W4386894037 cites W3003593805 @default.
- W4386894037 cites W3041076719 @default.
- W4386894037 cites W3045844893 @default.
- W4386894037 cites W3057898108 @default.
- W4386894037 cites W3085854806 @default.
- W4386894037 cites W3121258721 @default.
- W4386894037 cites W3128553897 @default.
- W4386894037 cites W3134397144 @default.
- W4386894037 cites W3146740292 @default.
- W4386894037 cites W3159983323 @default.
- W4386894037 cites W3209453546 @default.
- W4386894037 cites W3209598599 @default.
- W4386894037 cites W4205663607 @default.
- W4386894037 cites W4226343570 @default.
- W4386894037 cites W4286435434 @default.
- W4386894037 cites W4295129830 @default.
- W4386894037 cites W4295850094 @default.
- W4386894037 cites W4312737473 @default.
- W4386894037 cites W4315606127 @default.
- W4386894037 cites W4327923876 @default.
- W4386894037 cites W4383428445 @default.
- W4386894037 doi "https://doi.org/10.3390/app131810458" @default.
- W4386894037 hasPublicationYear "2023" @default.
- W4386894037 type Work @default.
- W4386894037 citedByCount "0" @default.
- W4386894037 crossrefType "journal-article" @default.
- W4386894037 hasAuthorship W4386894037A5001968972 @default.
- W4386894037 hasAuthorship W4386894037A5010106841 @default.
- W4386894037 hasAuthorship W4386894037A5022677475 @default.
- W4386894037 hasBestOaLocation W43868940371 @default.
- W4386894037 hasConcept C111919701 @default.
- W4386894037 hasConcept C118505674 @default.
- W4386894037 hasConcept C119857082 @default.
- W4386894037 hasConcept C124101348 @default.
- W4386894037 hasConcept C127313418 @default.
- W4386894037 hasConcept C134306372 @default.
- W4386894037 hasConcept C153083717 @default.
- W4386894037 hasConcept C154945302 @default.
- W4386894037 hasConcept C165205528 @default.
- W4386894037 hasConcept C175551986 @default.
- W4386894037 hasConcept C33923547 @default.
- W4386894037 hasConcept C36503486 @default.
- W4386894037 hasConcept C41008148 @default.
- W4386894037 hasConceptScore W4386894037C111919701 @default.
- W4386894037 hasConceptScore W4386894037C118505674 @default.
- W4386894037 hasConceptScore W4386894037C119857082 @default.
- W4386894037 hasConceptScore W4386894037C124101348 @default.
- W4386894037 hasConceptScore W4386894037C127313418 @default.
- W4386894037 hasConceptScore W4386894037C134306372 @default.
- W4386894037 hasConceptScore W4386894037C153083717 @default.
- W4386894037 hasConceptScore W4386894037C154945302 @default.
- W4386894037 hasConceptScore W4386894037C165205528 @default.
- W4386894037 hasConceptScore W4386894037C175551986 @default.
- W4386894037 hasConceptScore W4386894037C33923547 @default.
- W4386894037 hasConceptScore W4386894037C36503486 @default.
- W4386894037 hasConceptScore W4386894037C41008148 @default.
- W4386894037 hasIssue "18" @default.
- W4386894037 hasLocation W43868940371 @default.
- W4386894037 hasOpenAccess W4386894037 @default.
- W4386894037 hasPrimaryLocation W43868940371 @default.
- W4386894037 hasRelatedWork W2275988210 @default.
- W4386894037 hasRelatedWork W2385621972 @default.
- W4386894037 hasRelatedWork W2961085424 @default.
- W4386894037 hasRelatedWork W3046775127 @default.
- W4386894037 hasRelatedWork W3170094116 @default.
- W4386894037 hasRelatedWork W4285260836 @default.
- W4386894037 hasRelatedWork W4286629047 @default.
- W4386894037 hasRelatedWork W4306321456 @default.
- W4386894037 hasRelatedWork W4306674287 @default.
- W4386894037 hasRelatedWork W4224009465 @default.
- W4386894037 hasVolume "13" @default.
- W4386894037 isParatext "false" @default.
- W4386894037 isRetracted "false" @default.
- W4386894037 workType "article" @default.