Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386894080> ?p ?o ?g. }
- W4386894080 abstract "Introduction: The excellent soft-tissue contrast of magnetic resonance imaging (MRI) is appealing for delineation of organs-at-risk (OARs) as it is required for radiation therapy planning (RTP). In the last decade there has been an increasing interest in using deep-learning (DL) techniques to shorten the labor-intensive manual work and increase reproducibility. This paper focuses on the automatic segmentation of 27 head-and-neck and 10 male pelvis OARs with deep-learning methods based on T2-weighted MR images. Method: The proposed method uses 2D U-Nets for localization and 3D U-Net for segmentation of the various structures. The models were trained using public and private datasets and evaluated on private datasets only. Results and discussion: Evaluation with ground-truth contours demonstrated that the proposed method can accurately segment the majority of OARs and indicated similar or superior performance to state-of-the-art models. Furthermore, the auto-contours were visually rated by clinicians using Likert score and on average, 81% of them was found clinically acceptable." @default.
- W4386894080 created "2023-09-21" @default.
- W4386894080 creator A5000721028 @default.
- W4386894080 creator A5002136396 @default.
- W4386894080 creator A5004129832 @default.
- W4386894080 creator A5008531804 @default.
- W4386894080 creator A5013995736 @default.
- W4386894080 creator A5019414836 @default.
- W4386894080 creator A5019706167 @default.
- W4386894080 creator A5024347663 @default.
- W4386894080 creator A5027880517 @default.
- W4386894080 creator A5028761395 @default.
- W4386894080 creator A5030637617 @default.
- W4386894080 creator A5033779181 @default.
- W4386894080 creator A5040747518 @default.
- W4386894080 creator A5041869902 @default.
- W4386894080 creator A5045784670 @default.
- W4386894080 creator A5046480861 @default.
- W4386894080 creator A5048664137 @default.
- W4386894080 creator A5050510179 @default.
- W4386894080 creator A5052912743 @default.
- W4386894080 creator A5054194644 @default.
- W4386894080 creator A5055595735 @default.
- W4386894080 creator A5058706557 @default.
- W4386894080 creator A5064140925 @default.
- W4386894080 creator A5072561603 @default.
- W4386894080 creator A5072910930 @default.
- W4386894080 creator A5078889804 @default.
- W4386894080 creator A5083914075 @default.
- W4386894080 creator A5086921847 @default.
- W4386894080 creator A5092529384 @default.
- W4386894080 creator A5092534990 @default.
- W4386894080 creator A5092534991 @default.
- W4386894080 creator A5092909586 @default.
- W4386894080 creator A5092909587 @default.
- W4386894080 creator A5092909588 @default.
- W4386894080 creator A5092909589 @default.
- W4386894080 creator A5092909590 @default.
- W4386894080 date "2023-09-19" @default.
- W4386894080 modified "2023-10-16" @default.
- W4386894080 title "Comprehensive deep learning-based framework for automatic organs-at-risk segmentation in head-and-neck and pelvis for MR-guided radiation therapy planning" @default.
- W4386894080 cites W1541580970 @default.
- W4386894080 cites W1901129140 @default.
- W4386894080 cites W2083927153 @default.
- W4386894080 cites W2099801199 @default.
- W4386894080 cites W2112884386 @default.
- W4386894080 cites W2140804420 @default.
- W4386894080 cites W2896797790 @default.
- W4386894080 cites W2904368999 @default.
- W4386894080 cites W2995681261 @default.
- W4386894080 cites W3009704576 @default.
- W4386894080 cites W3011056359 @default.
- W4386894080 cites W3024167052 @default.
- W4386894080 cites W3027849539 @default.
- W4386894080 cites W3103805449 @default.
- W4386894080 cites W3112701542 @default.
- W4386894080 cites W3180420993 @default.
- W4386894080 cites W3207972043 @default.
- W4386894080 cites W3214529032 @default.
- W4386894080 cites W4210495299 @default.
- W4386894080 cites W4212928906 @default.
- W4386894080 cites W4221110016 @default.
- W4386894080 cites W4281609205 @default.
- W4386894080 cites W4281649170 @default.
- W4386894080 cites W4288885933 @default.
- W4386894080 cites W4307366477 @default.
- W4386894080 cites W4313453653 @default.
- W4386894080 cites W4376603239 @default.
- W4386894080 cites W4379055201 @default.
- W4386894080 cites W4379094202 @default.
- W4386894080 doi "https://doi.org/10.3389/fphy.2023.1236792" @default.
- W4386894080 hasPublicationYear "2023" @default.
- W4386894080 type Work @default.
- W4386894080 citedByCount "0" @default.
- W4386894080 crossrefType "journal-article" @default.
- W4386894080 hasAuthorship W4386894080A5000721028 @default.
- W4386894080 hasAuthorship W4386894080A5002136396 @default.
- W4386894080 hasAuthorship W4386894080A5004129832 @default.
- W4386894080 hasAuthorship W4386894080A5008531804 @default.
- W4386894080 hasAuthorship W4386894080A5013995736 @default.
- W4386894080 hasAuthorship W4386894080A5019414836 @default.
- W4386894080 hasAuthorship W4386894080A5019706167 @default.
- W4386894080 hasAuthorship W4386894080A5024347663 @default.
- W4386894080 hasAuthorship W4386894080A5027880517 @default.
- W4386894080 hasAuthorship W4386894080A5028761395 @default.
- W4386894080 hasAuthorship W4386894080A5030637617 @default.
- W4386894080 hasAuthorship W4386894080A5033779181 @default.
- W4386894080 hasAuthorship W4386894080A5040747518 @default.
- W4386894080 hasAuthorship W4386894080A5041869902 @default.
- W4386894080 hasAuthorship W4386894080A5045784670 @default.
- W4386894080 hasAuthorship W4386894080A5046480861 @default.
- W4386894080 hasAuthorship W4386894080A5048664137 @default.
- W4386894080 hasAuthorship W4386894080A5050510179 @default.
- W4386894080 hasAuthorship W4386894080A5052912743 @default.
- W4386894080 hasAuthorship W4386894080A5054194644 @default.
- W4386894080 hasAuthorship W4386894080A5055595735 @default.
- W4386894080 hasAuthorship W4386894080A5058706557 @default.
- W4386894080 hasAuthorship W4386894080A5064140925 @default.
- W4386894080 hasAuthorship W4386894080A5072561603 @default.
- W4386894080 hasAuthorship W4386894080A5072910930 @default.