Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386895985> ?p ?o ?g. }
Showing items 1 to 100 of
100
with 100 items per page.
- W4386895985 abstract "Introduction Marine pollution can have a significant impact on the blue carbon, which finally affect the ocean’s ability to sequester carbon and contribute to achieving carbon neutrality. Marine pollution is a complex problem that requires a great deal of time and effort to measure. Existing machine learning algorithms cannot effectively solve the detection time problem and provide limited accuracy. Moreover, marine pollution can come from a variety of sources. However, most of the existing research focused on a single ocean indicator to analyze marine pollution. In this study, two indicators, marine organisms and debris, are used to create a more complete picture of the extent and impact of pollution in the ocean. Methods To effectively recognize different marine objects in the complex marine environment, we propose an integrated data fusion approach where deep convolutional neural networks (CNNs) are combined to conduct underwater object recognition. Through this multi-source data fusion approach, the accuracy of object recognition is significantly improved. After feature extraction, four machine and deep learning classifiers’ performances are used to train on features extracted with deep CNNs. Results The results show that VGG-16 achieves better performance than other feature extractors when detecting marine organisms. When detecting marine debris, AlexNet outperforms other deep CNNs. The results also show that the LSTM classifier with VGG-16 for detecting marine organisms outperforms other deep learning models. Discussion For detecting marine debris, the best performance was observed with the AlexNet extractor, which obtained the best classification result with an LSTM. This information can be used to develop policies and practices aimed at reducing pollution and protecting marine environments for future generations." @default.
- W4386895985 created "2023-09-21" @default.
- W4386895985 creator A5003724733 @default.
- W4386895985 creator A5033732336 @default.
- W4386895985 creator A5067122850 @default.
- W4386895985 creator A5073738656 @default.
- W4386895985 creator A5075045497 @default.
- W4386895985 date "2023-09-19" @default.
- W4386895985 modified "2023-09-29" @default.
- W4386895985 title "Monitoring marine pollution for carbon neutrality through a deep learning method with multi-source data fusion" @default.
- W4386895985 cites W2032650208 @default.
- W4386895985 cites W2074713408 @default.
- W4386895985 cites W2595156303 @default.
- W4386895985 cites W2600174524 @default.
- W4386895985 cites W2618530766 @default.
- W4386895985 cites W2759911238 @default.
- W4386895985 cites W2775953301 @default.
- W4386895985 cites W2883587405 @default.
- W4386895985 cites W2898852319 @default.
- W4386895985 cites W2900341665 @default.
- W4386895985 cites W2907958255 @default.
- W4386895985 cites W2914663144 @default.
- W4386895985 cites W2936645470 @default.
- W4386895985 cites W2941609401 @default.
- W4386895985 cites W2999855274 @default.
- W4386895985 cites W3011966163 @default.
- W4386895985 cites W3014724590 @default.
- W4386895985 cites W3015723199 @default.
- W4386895985 cites W3027362665 @default.
- W4386895985 cites W3028220388 @default.
- W4386895985 cites W3047443805 @default.
- W4386895985 cites W3048631361 @default.
- W4386895985 cites W3128592650 @default.
- W4386895985 cites W3198640376 @default.
- W4386895985 cites W3210044187 @default.
- W4386895985 cites W4210243751 @default.
- W4386895985 cites W4229011100 @default.
- W4386895985 cites W4235270681 @default.
- W4386895985 cites W4362602498 @default.
- W4386895985 cites W4378194596 @default.
- W4386895985 cites W4379984088 @default.
- W4386895985 cites W4380763457 @default.
- W4386895985 doi "https://doi.org/10.3389/fevo.2023.1257542" @default.
- W4386895985 hasPublicationYear "2023" @default.
- W4386895985 type Work @default.
- W4386895985 citedByCount "0" @default.
- W4386895985 crossrefType "journal-article" @default.
- W4386895985 hasAuthorship W4386895985A5003724733 @default.
- W4386895985 hasAuthorship W4386895985A5033732336 @default.
- W4386895985 hasAuthorship W4386895985A5067122850 @default.
- W4386895985 hasAuthorship W4386895985A5073738656 @default.
- W4386895985 hasAuthorship W4386895985A5075045497 @default.
- W4386895985 hasBestOaLocation W43868959851 @default.
- W4386895985 hasConcept C108583219 @default.
- W4386895985 hasConcept C111368507 @default.
- W4386895985 hasConcept C119857082 @default.
- W4386895985 hasConcept C127313418 @default.
- W4386895985 hasConcept C153180895 @default.
- W4386895985 hasConcept C154945302 @default.
- W4386895985 hasConcept C18903297 @default.
- W4386895985 hasConcept C2780492012 @default.
- W4386895985 hasConcept C39432304 @default.
- W4386895985 hasConcept C41008148 @default.
- W4386895985 hasConcept C521259446 @default.
- W4386895985 hasConcept C81363708 @default.
- W4386895985 hasConcept C86803240 @default.
- W4386895985 hasConcept C95623464 @default.
- W4386895985 hasConcept C98083399 @default.
- W4386895985 hasConceptScore W4386895985C108583219 @default.
- W4386895985 hasConceptScore W4386895985C111368507 @default.
- W4386895985 hasConceptScore W4386895985C119857082 @default.
- W4386895985 hasConceptScore W4386895985C127313418 @default.
- W4386895985 hasConceptScore W4386895985C153180895 @default.
- W4386895985 hasConceptScore W4386895985C154945302 @default.
- W4386895985 hasConceptScore W4386895985C18903297 @default.
- W4386895985 hasConceptScore W4386895985C2780492012 @default.
- W4386895985 hasConceptScore W4386895985C39432304 @default.
- W4386895985 hasConceptScore W4386895985C41008148 @default.
- W4386895985 hasConceptScore W4386895985C521259446 @default.
- W4386895985 hasConceptScore W4386895985C81363708 @default.
- W4386895985 hasConceptScore W4386895985C86803240 @default.
- W4386895985 hasConceptScore W4386895985C95623464 @default.
- W4386895985 hasConceptScore W4386895985C98083399 @default.
- W4386895985 hasLocation W43868959851 @default.
- W4386895985 hasOpenAccess W4386895985 @default.
- W4386895985 hasPrimaryLocation W43868959851 @default.
- W4386895985 hasRelatedWork W2731899572 @default.
- W4386895985 hasRelatedWork W2999805992 @default.
- W4386895985 hasRelatedWork W3116150086 @default.
- W4386895985 hasRelatedWork W3133861977 @default.
- W4386895985 hasRelatedWork W4200173597 @default.
- W4386895985 hasRelatedWork W4223943233 @default.
- W4386895985 hasRelatedWork W4291897433 @default.
- W4386895985 hasRelatedWork W4312417841 @default.
- W4386895985 hasRelatedWork W4321369474 @default.
- W4386895985 hasRelatedWork W4380075502 @default.
- W4386895985 hasVolume "11" @default.
- W4386895985 isParatext "false" @default.
- W4386895985 isRetracted "false" @default.
- W4386895985 workType "article" @default.