Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386897488> ?p ?o ?g. }
- W4386897488 abstract "Abstract Spam emails pose a substantial cybersecurity danger, necessitating accurate classification to reduce unwanted messages and mitigate risks. This study focuses on enhancing spam email classification accuracy using stacking ensemble machine learning techniques. We trained and tested five classifiers: logistic regression, decision tree, K-nearest neighbors (KNN), Gaussian naive Bayes and AdaBoost. To address overfitting, two distinct datasets of spam emails were aggregated and balanced. Evaluating individual classifiers based on recall, precision and F1 score metrics revealed AdaBoost as the top performer. Considering evolving spam technology and new message types challenging traditional approaches, we propose a stacking method. By combining predictions from multiple base models, the stacking method aims to improve classification accuracy. The results demonstrate superior performance of the stacking method with the highest accuracy (98.8%), recall (98.8%) and F1 score (98.9%) among tested methods. Additional experiments validated our approach by varying dataset sizes and testing different classifier combinations. Our study presents an innovative combination of classifiers that significantly improves accuracy, contributing to the growing body of research on stacking techniques. Moreover, we compare classifier performances using a unique combination of two datasets, highlighting the potential of ensemble techniques, specifically stacking, in enhancing spam email classification accuracy. The implications extend beyond spam classification systems, offering insights applicable to other classification tasks. Continued research on emerging spam techniques is vital to ensure long-term effectiveness." @default.
- W4386897488 created "2023-09-21" @default.
- W4386897488 creator A5013388236 @default.
- W4386897488 creator A5034598582 @default.
- W4386897488 creator A5052097158 @default.
- W4386897488 creator A5059146127 @default.
- W4386897488 date "2023-09-20" @default.
- W4386897488 modified "2023-09-27" @default.
- W4386897488 title "Improving spam email classification accuracy using ensemble techniques: a stacking approach" @default.
- W4386897488 cites W1988790447 @default.
- W4386897488 cites W1989284546 @default.
- W4386897488 cites W2020648356 @default.
- W4386897488 cites W2095195675 @default.
- W4386897488 cites W2165701072 @default.
- W4386897488 cites W2170505850 @default.
- W4386897488 cites W2193428859 @default.
- W4386897488 cites W2478192814 @default.
- W4386897488 cites W2567149662 @default.
- W4386897488 cites W2901750264 @default.
- W4386897488 cites W2965813329 @default.
- W4386897488 cites W3003185269 @default.
- W4386897488 cites W3003892205 @default.
- W4386897488 cites W3011776577 @default.
- W4386897488 cites W3082772432 @default.
- W4386897488 cites W3085571720 @default.
- W4386897488 cites W3088799805 @default.
- W4386897488 cites W3111611562 @default.
- W4386897488 cites W3113519107 @default.
- W4386897488 cites W3123084617 @default.
- W4386897488 cites W3130732469 @default.
- W4386897488 cites W3144356240 @default.
- W4386897488 cites W3196257774 @default.
- W4386897488 cites W3209679731 @default.
- W4386897488 cites W3209980779 @default.
- W4386897488 cites W4292432196 @default.
- W4386897488 cites W4306722552 @default.
- W4386897488 cites W4319083593 @default.
- W4386897488 doi "https://doi.org/10.1007/s10207-023-00756-1" @default.
- W4386897488 hasPublicationYear "2023" @default.
- W4386897488 type Work @default.
- W4386897488 citedByCount "0" @default.
- W4386897488 crossrefType "journal-article" @default.
- W4386897488 hasAuthorship W4386897488A5013388236 @default.
- W4386897488 hasAuthorship W4386897488A5034598582 @default.
- W4386897488 hasAuthorship W4386897488A5052097158 @default.
- W4386897488 hasAuthorship W4386897488A5059146127 @default.
- W4386897488 hasBestOaLocation W43868974881 @default.
- W4386897488 hasConcept C110083411 @default.
- W4386897488 hasConcept C119857082 @default.
- W4386897488 hasConcept C121332964 @default.
- W4386897488 hasConcept C12267149 @default.
- W4386897488 hasConcept C124101348 @default.
- W4386897488 hasConcept C141404830 @default.
- W4386897488 hasConcept C153180895 @default.
- W4386897488 hasConcept C154945302 @default.
- W4386897488 hasConcept C169258074 @default.
- W4386897488 hasConcept C22019652 @default.
- W4386897488 hasConcept C33347731 @default.
- W4386897488 hasConcept C41008148 @default.
- W4386897488 hasConcept C45942800 @default.
- W4386897488 hasConcept C46141821 @default.
- W4386897488 hasConcept C46686674 @default.
- W4386897488 hasConcept C50644808 @default.
- W4386897488 hasConcept C52001869 @default.
- W4386897488 hasConcept C81669768 @default.
- W4386897488 hasConcept C84525736 @default.
- W4386897488 hasConcept C95623464 @default.
- W4386897488 hasConceptScore W4386897488C110083411 @default.
- W4386897488 hasConceptScore W4386897488C119857082 @default.
- W4386897488 hasConceptScore W4386897488C121332964 @default.
- W4386897488 hasConceptScore W4386897488C12267149 @default.
- W4386897488 hasConceptScore W4386897488C124101348 @default.
- W4386897488 hasConceptScore W4386897488C141404830 @default.
- W4386897488 hasConceptScore W4386897488C153180895 @default.
- W4386897488 hasConceptScore W4386897488C154945302 @default.
- W4386897488 hasConceptScore W4386897488C169258074 @default.
- W4386897488 hasConceptScore W4386897488C22019652 @default.
- W4386897488 hasConceptScore W4386897488C33347731 @default.
- W4386897488 hasConceptScore W4386897488C41008148 @default.
- W4386897488 hasConceptScore W4386897488C45942800 @default.
- W4386897488 hasConceptScore W4386897488C46141821 @default.
- W4386897488 hasConceptScore W4386897488C46686674 @default.
- W4386897488 hasConceptScore W4386897488C50644808 @default.
- W4386897488 hasConceptScore W4386897488C52001869 @default.
- W4386897488 hasConceptScore W4386897488C81669768 @default.
- W4386897488 hasConceptScore W4386897488C84525736 @default.
- W4386897488 hasConceptScore W4386897488C95623464 @default.
- W4386897488 hasFunder F4320309820 @default.
- W4386897488 hasLocation W43868974881 @default.
- W4386897488 hasOpenAccess W4386897488 @default.
- W4386897488 hasPrimaryLocation W43868974881 @default.
- W4386897488 hasRelatedWork W1996541855 @default.
- W4386897488 hasRelatedWork W2904660175 @default.
- W4386897488 hasRelatedWork W3100297620 @default.
- W4386897488 hasRelatedWork W3126325819 @default.
- W4386897488 hasRelatedWork W3204641204 @default.
- W4386897488 hasRelatedWork W4293069612 @default.
- W4386897488 hasRelatedWork W4296081764 @default.
- W4386897488 hasRelatedWork W4298012357 @default.
- W4386897488 hasRelatedWork W4320484903 @default.