Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386902841> ?p ?o ?g. }
Showing items 1 to 64 of
64
with 100 items per page.
- W4386902841 endingPage "18" @default.
- W4386902841 startingPage "1" @default.
- W4386902841 abstract "Patent litigation is an expensive and time-consuming legal process. To reduce costs, companies can proactively manage patents using predictive analysis to identify potential plaintiffs, defendants, and patents that may lead to litigation. However, there has been limited progress in predicting patent litigation due to the scarcity of lawsuits, the complexities of intentions, and the diversity of litigation characteristics. To this end, in this paper, we summarize the major causes of patent litigation into multiple aspects: the complex relations among plaintiffs, defendants and patents as well as the diverse content information from them. Along this line, we propose a Multi-aspect Neural Tensor Factorization (MANTF) framework for patent litigation prediction. Firstly, a Pair-wise Tensor Factorization (PTF) module is designed to capture the complex relations among plaintiffs, defendants and patents inherent in a three-dimensional tensor, which will produce factorized latent vectors for companies and patents with pair-wise ranking estimators. Then, to better represent the patents and companies as an aid for PTF, we design a Patent Embedding Network (PEN) module and a Mask Company Embedding Network (MCEN) module to generate content-aware embedding for them, where PEN represents patents based on their meta, textual and graphical features, and MCEN represents companies by integrating their intrinsic features and competitions. Next, to integrate these three modules together, we leverage a Gaussian prior on the difference between factorized representations and content-aware embedding, and train MANTF in an end-to-end way. In the end, final predictions for patent litigation, i.e., the potentially litigated plaintiffs, defendants and patents, can be made with the well-trained model. We conduct extensive experiments on two real-world datasets, whose results prove that MANTF not only helps predict potential patent litigation but also shows robustness under various data sparse situations. Our codes and data are released at <uri xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>https://github.com/USTCwuhan/MANTF-master</uri> ." @default.
- W4386902841 created "2023-09-21" @default.
- W4386902841 creator A5007065999 @default.
- W4386902841 creator A5008610051 @default.
- W4386902841 creator A5017692278 @default.
- W4386902841 creator A5033864788 @default.
- W4386902841 creator A5048237545 @default.
- W4386902841 creator A5049015446 @default.
- W4386902841 creator A5056342479 @default.
- W4386902841 creator A5080102032 @default.
- W4386902841 creator A5089502940 @default.
- W4386902841 date "2023-01-01" @default.
- W4386902841 modified "2023-09-27" @default.
- W4386902841 title "A Multi-Aspect Neural Tensor Factorization Framework for Patent Litigation Prediction" @default.
- W4386902841 doi "https://doi.org/10.1109/tbdata.2023.3313030" @default.
- W4386902841 hasPublicationYear "2023" @default.
- W4386902841 type Work @default.
- W4386902841 citedByCount "0" @default.
- W4386902841 crossrefType "journal-article" @default.
- W4386902841 hasAuthorship W4386902841A5007065999 @default.
- W4386902841 hasAuthorship W4386902841A5008610051 @default.
- W4386902841 hasAuthorship W4386902841A5017692278 @default.
- W4386902841 hasAuthorship W4386902841A5033864788 @default.
- W4386902841 hasAuthorship W4386902841A5048237545 @default.
- W4386902841 hasAuthorship W4386902841A5049015446 @default.
- W4386902841 hasAuthorship W4386902841A5056342479 @default.
- W4386902841 hasAuthorship W4386902841A5080102032 @default.
- W4386902841 hasAuthorship W4386902841A5089502940 @default.
- W4386902841 hasConcept C11413529 @default.
- W4386902841 hasConcept C153083717 @default.
- W4386902841 hasConcept C154945302 @default.
- W4386902841 hasConcept C17744445 @default.
- W4386902841 hasConcept C187834632 @default.
- W4386902841 hasConcept C199539241 @default.
- W4386902841 hasConcept C41008148 @default.
- W4386902841 hasConcept C41608201 @default.
- W4386902841 hasConcept C97460637 @default.
- W4386902841 hasConceptScore W4386902841C11413529 @default.
- W4386902841 hasConceptScore W4386902841C153083717 @default.
- W4386902841 hasConceptScore W4386902841C154945302 @default.
- W4386902841 hasConceptScore W4386902841C17744445 @default.
- W4386902841 hasConceptScore W4386902841C187834632 @default.
- W4386902841 hasConceptScore W4386902841C199539241 @default.
- W4386902841 hasConceptScore W4386902841C41008148 @default.
- W4386902841 hasConceptScore W4386902841C41608201 @default.
- W4386902841 hasConceptScore W4386902841C97460637 @default.
- W4386902841 hasLocation W43869028411 @default.
- W4386902841 hasOpenAccess W4386902841 @default.
- W4386902841 hasPrimaryLocation W43869028411 @default.
- W4386902841 hasRelatedWork W1503053695 @default.
- W4386902841 hasRelatedWork W2055709700 @default.
- W4386902841 hasRelatedWork W2301034686 @default.
- W4386902841 hasRelatedWork W2806860970 @default.
- W4386902841 hasRelatedWork W2974810259 @default.
- W4386902841 hasRelatedWork W3013167367 @default.
- W4386902841 hasRelatedWork W3030085148 @default.
- W4386902841 hasRelatedWork W4288954856 @default.
- W4386902841 hasRelatedWork W4296285654 @default.
- W4386902841 hasRelatedWork W4320342922 @default.
- W4386902841 isParatext "false" @default.
- W4386902841 isRetracted "false" @default.
- W4386902841 workType "article" @default.