Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386903313> ?p ?o ?g. }
Showing items 1 to 85 of
85
with 100 items per page.
- W4386903313 endingPage "1605" @default.
- W4386903313 startingPage "1596" @default.
- W4386903313 abstract "Residential heating, ventilation and air conditioning (HVAC) provides important demand response resources for the new power system with high proportion of renewable energy. Residential HAVC scheduling strategies that adapt to real-time electricity price signals formulated by demand response program and ambient temperature can significantly reduce electricity costs while ensuring occupants' comfort. However, since the pricing process and weather conditions are affected by many factors, conventional model-based method is difficult to meet the scheduling requirements in complex environments. To solve this problem, we propose an adaptive optimal scheduling strategy for residential HVAC based on deep reinforcement learning (DRL) method. The scheduling problem can be regarded as a Markov decision process (MDP). The proposed method can adaptively learn the state transition probability to make economical decision under the tolerance violations. Specifically, the residential thermal parameters obtained by the least-squares parameter estimation (LSPE) can provide a basis for the state transition probability of MDP. Daily simulations are verified under the electricity prices and temperature data sets, and numerous experimental results demonstrate the effectiveness of the proposed method." @default.
- W4386903313 created "2023-09-21" @default.
- W4386903313 creator A5002281385 @default.
- W4386903313 creator A5002566872 @default.
- W4386903313 creator A5010468843 @default.
- W4386903313 creator A5022116907 @default.
- W4386903313 creator A5084392895 @default.
- W4386903313 creator A5089330380 @default.
- W4386903313 date "2023-01-01" @default.
- W4386903313 modified "2023-09-27" @default.
- W4386903313 title "Optimal Scheduling of Residential Heating, Ventilation and Air Conditioning Based on Deep Reinforcement Learning" @default.
- W4386903313 doi "https://doi.org/10.35833/mpce.2022.000249" @default.
- W4386903313 hasPublicationYear "2023" @default.
- W4386903313 type Work @default.
- W4386903313 citedByCount "0" @default.
- W4386903313 crossrefType "journal-article" @default.
- W4386903313 hasAuthorship W4386903313A5002281385 @default.
- W4386903313 hasAuthorship W4386903313A5002566872 @default.
- W4386903313 hasAuthorship W4386903313A5010468843 @default.
- W4386903313 hasAuthorship W4386903313A5022116907 @default.
- W4386903313 hasAuthorship W4386903313A5084392895 @default.
- W4386903313 hasAuthorship W4386903313A5089330380 @default.
- W4386903313 hasBestOaLocation W43869033131 @default.
- W4386903313 hasConcept C103742991 @default.
- W4386903313 hasConcept C105795698 @default.
- W4386903313 hasConcept C106189395 @default.
- W4386903313 hasConcept C119599485 @default.
- W4386903313 hasConcept C121332964 @default.
- W4386903313 hasConcept C122346748 @default.
- W4386903313 hasConcept C126255220 @default.
- W4386903313 hasConcept C127413603 @default.
- W4386903313 hasConcept C133913538 @default.
- W4386903313 hasConcept C154945302 @default.
- W4386903313 hasConcept C159886148 @default.
- W4386903313 hasConcept C188573790 @default.
- W4386903313 hasConcept C206658404 @default.
- W4386903313 hasConcept C206729178 @default.
- W4386903313 hasConcept C2779438525 @default.
- W4386903313 hasConcept C33923547 @default.
- W4386903313 hasConcept C41008148 @default.
- W4386903313 hasConcept C42475967 @default.
- W4386903313 hasConcept C78519656 @default.
- W4386903313 hasConcept C97355855 @default.
- W4386903313 hasConcept C97541855 @default.
- W4386903313 hasConceptScore W4386903313C103742991 @default.
- W4386903313 hasConceptScore W4386903313C105795698 @default.
- W4386903313 hasConceptScore W4386903313C106189395 @default.
- W4386903313 hasConceptScore W4386903313C119599485 @default.
- W4386903313 hasConceptScore W4386903313C121332964 @default.
- W4386903313 hasConceptScore W4386903313C122346748 @default.
- W4386903313 hasConceptScore W4386903313C126255220 @default.
- W4386903313 hasConceptScore W4386903313C127413603 @default.
- W4386903313 hasConceptScore W4386903313C133913538 @default.
- W4386903313 hasConceptScore W4386903313C154945302 @default.
- W4386903313 hasConceptScore W4386903313C159886148 @default.
- W4386903313 hasConceptScore W4386903313C188573790 @default.
- W4386903313 hasConceptScore W4386903313C206658404 @default.
- W4386903313 hasConceptScore W4386903313C206729178 @default.
- W4386903313 hasConceptScore W4386903313C2779438525 @default.
- W4386903313 hasConceptScore W4386903313C33923547 @default.
- W4386903313 hasConceptScore W4386903313C41008148 @default.
- W4386903313 hasConceptScore W4386903313C42475967 @default.
- W4386903313 hasConceptScore W4386903313C78519656 @default.
- W4386903313 hasConceptScore W4386903313C97355855 @default.
- W4386903313 hasConceptScore W4386903313C97541855 @default.
- W4386903313 hasIssue "4" @default.
- W4386903313 hasLocation W43869033131 @default.
- W4386903313 hasOpenAccess W4386903313 @default.
- W4386903313 hasPrimaryLocation W43869033131 @default.
- W4386903313 hasRelatedWork W1719465681 @default.
- W4386903313 hasRelatedWork W177218110 @default.
- W4386903313 hasRelatedWork W2058482722 @default.
- W4386903313 hasRelatedWork W2376598862 @default.
- W4386903313 hasRelatedWork W2940870102 @default.
- W4386903313 hasRelatedWork W2990751096 @default.
- W4386903313 hasRelatedWork W3038059713 @default.
- W4386903313 hasRelatedWork W4226034203 @default.
- W4386903313 hasRelatedWork W4313567217 @default.
- W4386903313 hasRelatedWork W2039352580 @default.
- W4386903313 hasVolume "11" @default.
- W4386903313 isParatext "false" @default.
- W4386903313 isRetracted "false" @default.
- W4386903313 workType "article" @default.