Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386905729> ?p ?o ?g. }
- W4386905729 endingPage "103492" @default.
- W4386905729 startingPage "103492" @default.
- W4386905729 abstract "Spatially and timely accurate information about tropical forest disturbances is crucial for tracking critical forest changes, supporting forest management, and enabling law enforcement activities. In recent years, forest disturbance monitoring and alerting using cloud-penetrating Synthetic Aperture Radar (SAR) imagery has proven effective at national and pan-tropical scales. Related detection approaches mostly rely on detecting post-disturbance altered backscatter values in C or L-band SAR backscatter time series. Some disturbances are characterized by post-disturbance tree remnants or debris. For the time periods where these kinds of remnants remain present at the surface, the SAR backscatter values can be similar to those of stable forest. This can cause omission errors and delayed detection and it is considered a key shortcoming of current backscatter-based approaches. We hypothesized that despite fairly stable backscatter values, different orientation and arrangement of tree remnants leads to an altered heterogeneity of neighboring pixel values and that this can be quantified by textural features. We assessed six uncorrelated Gray-Level Co-Occurrence Matrix (GLCM) textural features using dense Sentinel-1C-band SAR time series. Forest disturbances, based on each GLCM feature using a pixel-based probabilistic change detection algorithm, were compared against results from forest disturbances mapped based only on backscatter data. We studied the impact of speckle-filtering on GLCM features and GLCM kernel sizes. We developed a method to combine backscatter and GLCM features, and we evaluated its robustness for a variety of natural and human-induced forest disturbance types across the Amazon Biome. Out of the six tested GLCM features GLCM Sum Average (SAVG) performed best. GLCM features derived from non-speckle filtered and speckle-filtered backscatter data did not show a noticeable impact on accuracy. A combination of backscatter and GLCM SAVG resulted in a reduced omission error of up to 36% and an improved timeliness of detections by average of to 30 days, with individual detection showing even higher improvements on a pixel level. The method was found to be robust across a variety of forest disturbance types. The largest reduction of omission errors and greatest improvement of timeliness was evident for sites with large unfragmented disturbance patches (e.g., large-scale clearings, fires and mining). For increasing GLCM kernel sizes, we observed a trade-off between reduced omission errors combined with improved timeliness and increasing commission errors. A kernel size of 5 was found to provide the best trade-off for reducing omission errors and improving timeliness while not introducing commission errors. The results emphasize that combining SAR-based textural features and backscatter can overcome omission errors caused by post-disturbance tree remnants or debris. This can help to improve the consistency and timelines of short (C-band) and long wavelength (L-band) based operational SAR disturbance monitoring and alerting. Result maps can be visualized via: https://johannesballing.users.earthengine.app/view/forest-disturbance-texture." @default.
- W4386905729 created "2023-09-21" @default.
- W4386905729 creator A5004918175 @default.
- W4386905729 creator A5014992439 @default.
- W4386905729 creator A5051124265 @default.
- W4386905729 date "2023-11-01" @default.
- W4386905729 modified "2023-10-01" @default.
- W4386905729 title "How textural features can improve SAR-based tropical forest disturbance mapping" @default.
- W4386905729 cites W1913278928 @default.
- W4386905729 cites W1963799937 @default.
- W4386905729 cites W1974002472 @default.
- W4386905729 cites W1976029164 @default.
- W4386905729 cites W1981213426 @default.
- W4386905729 cites W1984093344 @default.
- W4386905729 cites W2011500029 @default.
- W4386905729 cites W2014187500 @default.
- W4386905729 cites W2044465660 @default.
- W4386905729 cites W2045730031 @default.
- W4386905729 cites W2048126105 @default.
- W4386905729 cites W2068167377 @default.
- W4386905729 cites W2089402914 @default.
- W4386905729 cites W2091720886 @default.
- W4386905729 cites W2110133912 @default.
- W4386905729 cites W2110979633 @default.
- W4386905729 cites W2112206513 @default.
- W4386905729 cites W2113388748 @default.
- W4386905729 cites W2138785911 @default.
- W4386905729 cites W2162921856 @default.
- W4386905729 cites W2181171301 @default.
- W4386905729 cites W2288373547 @default.
- W4386905729 cites W2462509320 @default.
- W4386905729 cites W2585014453 @default.
- W4386905729 cites W2607141325 @default.
- W4386905729 cites W2617612141 @default.
- W4386905729 cites W2766826930 @default.
- W4386905729 cites W2803016332 @default.
- W4386905729 cites W2803433330 @default.
- W4386905729 cites W2809159594 @default.
- W4386905729 cites W2885696803 @default.
- W4386905729 cites W2886438884 @default.
- W4386905729 cites W2890263737 @default.
- W4386905729 cites W2899623316 @default.
- W4386905729 cites W2920883950 @default.
- W4386905729 cites W2972461963 @default.
- W4386905729 cites W2980368035 @default.
- W4386905729 cites W2987399229 @default.
- W4386905729 cites W3009000090 @default.
- W4386905729 cites W3034843493 @default.
- W4386905729 cites W3035585878 @default.
- W4386905729 cites W3040119987 @default.
- W4386905729 cites W3096729017 @default.
- W4386905729 cites W3097706287 @default.
- W4386905729 cites W3107403224 @default.
- W4386905729 cites W3120961911 @default.
- W4386905729 cites W3122099883 @default.
- W4386905729 cites W3149534198 @default.
- W4386905729 cites W3155799782 @default.
- W4386905729 cites W3163231391 @default.
- W4386905729 cites W3172536902 @default.
- W4386905729 cites W3194858231 @default.
- W4386905729 cites W3207218971 @default.
- W4386905729 cites W3207932796 @default.
- W4386905729 cites W4200279643 @default.
- W4386905729 cites W4220915571 @default.
- W4386905729 cites W4224305406 @default.
- W4386905729 cites W4289204844 @default.
- W4386905729 doi "https://doi.org/10.1016/j.jag.2023.103492" @default.
- W4386905729 hasPublicationYear "2023" @default.
- W4386905729 type Work @default.
- W4386905729 citedByCount "0" @default.
- W4386905729 crossrefType "journal-article" @default.
- W4386905729 hasAuthorship W4386905729A5004918175 @default.
- W4386905729 hasAuthorship W4386905729A5014992439 @default.
- W4386905729 hasAuthorship W4386905729A5051124265 @default.
- W4386905729 hasBestOaLocation W43869057291 @default.
- W4386905729 hasConcept C110872660 @default.
- W4386905729 hasConcept C127313418 @default.
- W4386905729 hasConcept C151730666 @default.
- W4386905729 hasConcept C154945302 @default.
- W4386905729 hasConcept C160633673 @default.
- W4386905729 hasConcept C18903297 @default.
- W4386905729 hasConcept C205649164 @default.
- W4386905729 hasConcept C2777601987 @default.
- W4386905729 hasConcept C30354325 @default.
- W4386905729 hasConcept C39432304 @default.
- W4386905729 hasConcept C41008148 @default.
- W4386905729 hasConcept C555944384 @default.
- W4386905729 hasConcept C62649853 @default.
- W4386905729 hasConcept C76155785 @default.
- W4386905729 hasConcept C86803240 @default.
- W4386905729 hasConcept C87360688 @default.
- W4386905729 hasConcept C89920630 @default.
- W4386905729 hasConceptScore W4386905729C110872660 @default.
- W4386905729 hasConceptScore W4386905729C127313418 @default.
- W4386905729 hasConceptScore W4386905729C151730666 @default.
- W4386905729 hasConceptScore W4386905729C154945302 @default.
- W4386905729 hasConceptScore W4386905729C160633673 @default.
- W4386905729 hasConceptScore W4386905729C18903297 @default.