Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386905866> ?p ?o ?g. }
- W4386905866 endingPage "105461" @default.
- W4386905866 startingPage "105461" @default.
- W4386905866 abstract "Recent research has shown that a person's heart rate (HR) can be estimated using video data through remote photoplethysmography (rPPG). However, this approach is faced with various challenges, including the inability to prepare training data that encompasses all realistic conditions, the impact of complex inference models on reasoning speed, and the lack of interpretability that hinders medical and healthcare applications. To tackle these issues, a lightweight and interpretable convolutional neural network is proposed for real-time HR monitoring using a low-cost video camera under realistic conditions. The Mediapipe framework is leveraged to construct a facial detection and tracking pipeline that is robust to head movements and illumination changes. Empirical mode decomposition (EMD) is then combined with a channel-wise attention-based convolutional neural network (CNN) for HR inference. Additionally, a temporal long-term peak merge method is proposed as a post-processing step to further enhance the accuracy of the neural network inference. The results of linear regression and Bland-Altman analysis demonstrate consistency between the estimated HR values and the ground truth. Moreover, experimental outcomes show no significant difference in the inference times of the proposed method running with or without a GPU, with a reasoning speed on mobile CPU remaining within 100 ms, ensuring real-time HR monitoring. Furthermore, this study provides pioneering empirical evidence to open the black box of neural networks in HR monitoring using rPPG signals." @default.
- W4386905866 created "2023-09-21" @default.
- W4386905866 creator A5062109513 @default.
- W4386905866 creator A5066796969 @default.
- W4386905866 creator A5077153882 @default.
- W4386905866 date "2024-01-01" @default.
- W4386905866 modified "2023-09-27" @default.
- W4386905866 title "Lightweight and interpretable convolutional neural network for real-time heart rate monitoring using low-cost video camera under realistic conditions" @default.
- W4386905866 cites W1967067747 @default.
- W4386905866 cites W1984554603 @default.
- W4386905866 cites W1986273245 @default.
- W4386905866 cites W1988770599 @default.
- W4386905866 cites W2003922338 @default.
- W4386905866 cites W2007221293 @default.
- W4386905866 cites W2015242484 @default.
- W4386905866 cites W2016778993 @default.
- W4386905866 cites W2019882679 @default.
- W4386905866 cites W2037029919 @default.
- W4386905866 cites W2044935899 @default.
- W4386905866 cites W2059678427 @default.
- W4386905866 cites W2060642847 @default.
- W4386905866 cites W2060667206 @default.
- W4386905866 cites W2069450192 @default.
- W4386905866 cites W2069692225 @default.
- W4386905866 cites W2085061534 @default.
- W4386905866 cites W2085492612 @default.
- W4386905866 cites W2092845827 @default.
- W4386905866 cites W2106665847 @default.
- W4386905866 cites W2110576716 @default.
- W4386905866 cites W2112215023 @default.
- W4386905866 cites W2117390776 @default.
- W4386905866 cites W2120390927 @default.
- W4386905866 cites W2143428794 @default.
- W4386905866 cites W2164993323 @default.
- W4386905866 cites W2171496128 @default.
- W4386905866 cites W2255363334 @default.
- W4386905866 cites W2324113729 @default.
- W4386905866 cites W2402211617 @default.
- W4386905866 cites W2472200183 @default.
- W4386905866 cites W2529149089 @default.
- W4386905866 cites W2565639579 @default.
- W4386905866 cites W2598525681 @default.
- W4386905866 cites W2609496847 @default.
- W4386905866 cites W2738968590 @default.
- W4386905866 cites W2756574825 @default.
- W4386905866 cites W2771521703 @default.
- W4386905866 cites W2789920943 @default.
- W4386905866 cites W2794220693 @default.
- W4386905866 cites W2891834928 @default.
- W4386905866 cites W2899293823 @default.
- W4386905866 cites W2900712889 @default.
- W4386905866 cites W2902449706 @default.
- W4386905866 cites W2903559293 @default.
- W4386905866 cites W2909336075 @default.
- W4386905866 cites W2922420779 @default.
- W4386905866 cites W2946859228 @default.
- W4386905866 cites W2963433879 @default.
- W4386905866 cites W2984922178 @default.
- W4386905866 cites W2996061341 @default.
- W4386905866 cites W3001042480 @default.
- W4386905866 cites W3006580545 @default.
- W4386905866 cites W3011590044 @default.
- W4386905866 cites W3015003552 @default.
- W4386905866 cites W3043119495 @default.
- W4386905866 cites W3048339597 @default.
- W4386905866 cites W3087922470 @default.
- W4386905866 cites W3109219900 @default.
- W4386905866 cites W3132189050 @default.
- W4386905866 cites W3134237664 @default.
- W4386905866 cites W3136415279 @default.
- W4386905866 cites W3139413313 @default.
- W4386905866 cites W3159702298 @default.
- W4386905866 cites W3179605112 @default.
- W4386905866 cites W3183637793 @default.
- W4386905866 cites W3214396588 @default.
- W4386905866 cites W4210242902 @default.
- W4386905866 cites W4220772272 @default.
- W4386905866 cites W4220789554 @default.
- W4386905866 cites W4220996455 @default.
- W4386905866 cites W4281798629 @default.
- W4386905866 cites W4285992164 @default.
- W4386905866 cites W4299327394 @default.
- W4386905866 cites W4312084732 @default.
- W4386905866 cites W4361294415 @default.
- W4386905866 doi "https://doi.org/10.1016/j.bspc.2023.105461" @default.
- W4386905866 hasPublicationYear "2024" @default.
- W4386905866 type Work @default.
- W4386905866 citedByCount "0" @default.
- W4386905866 crossrefType "journal-article" @default.
- W4386905866 hasAuthorship W4386905866A5062109513 @default.
- W4386905866 hasAuthorship W4386905866A5066796969 @default.
- W4386905866 hasAuthorship W4386905866A5077153882 @default.
- W4386905866 hasConcept C106131492 @default.
- W4386905866 hasConcept C119857082 @default.
- W4386905866 hasConcept C124101348 @default.
- W4386905866 hasConcept C146849305 @default.
- W4386905866 hasConcept C153180895 @default.
- W4386905866 hasConcept C154945302 @default.