Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386905920> ?p ?o ?g. }
- W4386905920 endingPage "118992" @default.
- W4386905920 startingPage "118992" @default.
- W4386905920 abstract "Whether constructing more transportation infrastructure can be helpful for the achievement of energy conservation is a long-running and debatable issue. To answer this question, the relationship between transportation infrastructure and energy efficiency must first be clarified. Nonetheless, the existence of the endogeneity problem poses a challenge to defining the relationship. In this paper, an endogenous stochastic frontier analysis method is used to investigate the influence of transportation infrastructure on energy efficiency. Based on the prefecture-city level panel data in China, we find that after addressing the endogeneity problem, the impact of transportation infrastructure on energy efficiency increases dramatically. Moreover, this impact is more pronounced in small-scale cities compared to large and medium-scale cities. Regardless of the measurement of transportation infrastructure, instrumental variable, or production function form, we get the similar conclusions, demonstrating the robustness of our findings. Additional simulation analysis shows that the energy conservation potential would be 1222-2935 million kilowatt hours if the level of transportation infrastructure could be optimized. We recommend accelerating the transportation infrastructure construction, particularly in the small-scale cities so as to boost the energy efficiency and achieve energy conservation targets." @default.
- W4386905920 created "2023-09-21" @default.
- W4386905920 creator A5015692449 @default.
- W4386905920 creator A5072746383 @default.
- W4386905920 creator A5085424340 @default.
- W4386905920 creator A5090017514 @default.
- W4386905920 date "2023-11-01" @default.
- W4386905920 modified "2023-10-15" @default.
- W4386905920 title "Towards energy conservation by constructing more transportation infrastructure?: An endogenous stochastic frontier analysis framework" @default.
- W4386905920 cites W1123250277 @default.
- W4386905920 cites W1492311908 @default.
- W4386905920 cites W1713467959 @default.
- W4386905920 cites W1974300616 @default.
- W4386905920 cites W1999205399 @default.
- W4386905920 cites W2000996720 @default.
- W4386905920 cites W2030372577 @default.
- W4386905920 cites W2042191340 @default.
- W4386905920 cites W2043639950 @default.
- W4386905920 cites W2047984942 @default.
- W4386905920 cites W2048791727 @default.
- W4386905920 cites W2056430427 @default.
- W4386905920 cites W2059071347 @default.
- W4386905920 cites W2066028194 @default.
- W4386905920 cites W2157260067 @default.
- W4386905920 cites W2203891779 @default.
- W4386905920 cites W2548555578 @default.
- W4386905920 cites W2586472712 @default.
- W4386905920 cites W2611669035 @default.
- W4386905920 cites W2612876485 @default.
- W4386905920 cites W2613592945 @default.
- W4386905920 cites W2619567337 @default.
- W4386905920 cites W2624879796 @default.
- W4386905920 cites W2698677499 @default.
- W4386905920 cites W2759486562 @default.
- W4386905920 cites W2776615001 @default.
- W4386905920 cites W2791013473 @default.
- W4386905920 cites W2799477023 @default.
- W4386905920 cites W2898708187 @default.
- W4386905920 cites W2910978935 @default.
- W4386905920 cites W2938024414 @default.
- W4386905920 cites W2977313637 @default.
- W4386905920 cites W2984830606 @default.
- W4386905920 cites W3003107098 @default.
- W4386905920 cites W3009020762 @default.
- W4386905920 cites W3014877891 @default.
- W4386905920 cites W3033057929 @default.
- W4386905920 cites W3037552223 @default.
- W4386905920 cites W3044300377 @default.
- W4386905920 cites W3046843449 @default.
- W4386905920 cites W3081928833 @default.
- W4386905920 cites W3087071325 @default.
- W4386905920 cites W3093151436 @default.
- W4386905920 cites W3110807116 @default.
- W4386905920 cites W3113988910 @default.
- W4386905920 cites W3123547264 @default.
- W4386905920 cites W3124390037 @default.
- W4386905920 cites W3125879108 @default.
- W4386905920 cites W3130161572 @default.
- W4386905920 cites W3159116975 @default.
- W4386905920 cites W3161166095 @default.
- W4386905920 cites W3186463760 @default.
- W4386905920 cites W3197248959 @default.
- W4386905920 cites W3205772644 @default.
- W4386905920 cites W332158994 @default.
- W4386905920 cites W4200124814 @default.
- W4386905920 cites W4220815721 @default.
- W4386905920 cites W4220868560 @default.
- W4386905920 cites W4281701049 @default.
- W4386905920 cites W4295981415 @default.
- W4386905920 cites W4300817316 @default.
- W4386905920 cites W4312204234 @default.
- W4386905920 doi "https://doi.org/10.1016/j.jenvman.2023.118992" @default.
- W4386905920 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37738730" @default.
- W4386905920 hasPublicationYear "2023" @default.
- W4386905920 type Work @default.
- W4386905920 citedByCount "0" @default.
- W4386905920 crossrefType "journal-article" @default.
- W4386905920 hasAuthorship W4386905920A5015692449 @default.
- W4386905920 hasAuthorship W4386905920A5072746383 @default.
- W4386905920 hasAuthorship W4386905920A5085424340 @default.
- W4386905920 hasAuthorship W4386905920A5090017514 @default.
- W4386905920 hasConcept C104317684 @default.
- W4386905920 hasConcept C119599485 @default.
- W4386905920 hasConcept C127413603 @default.
- W4386905920 hasConcept C134560507 @default.
- W4386905920 hasConcept C144133560 @default.
- W4386905920 hasConcept C149782125 @default.
- W4386905920 hasConcept C162144332 @default.
- W4386905920 hasConcept C162324750 @default.
- W4386905920 hasConcept C166957645 @default.
- W4386905920 hasConcept C175444787 @default.
- W4386905920 hasConcept C185592680 @default.
- W4386905920 hasConcept C205649164 @default.
- W4386905920 hasConcept C22212356 @default.
- W4386905920 hasConcept C2742236 @default.
- W4386905920 hasConcept C2778348673 @default.
- W4386905920 hasConcept C2778571376 @default.
- W4386905920 hasConcept C2778755073 @default.