Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386906010> ?p ?o ?g. }
- W4386906010 endingPage "108253" @default.
- W4386906010 startingPage "108253" @default.
- W4386906010 abstract "Although the accurate prediction of the Standardized Precipitation Evapotranspiration Index (SPEI) is considered meaningful in reducing drought losses, its wide applications are limited to substantial meteorological data requirements. Considering Long Short-Term Memory network (LSTM) has proved its potential in estimating drought index, the concern is justified regarding the performance of its variants for estimating SPEI using limited meteorological input at the national level. Therefore, this study established the SPEI models using empirical methods, SVM, RNN, LSTM, BiLSTM, and CNN-LSTM, respectively, to cope with different data-missing scenarios. Based on a comprehensive comparison among different methods for multiscale SPEI estimation at four climatic zones of China, the results showed that BiLSTM was the most recommended model for estimating SPEI at 3-month timescale, with R2, NSE, and RMSE ranging 0.916–0.997, 0.907–0.997, and 0.143–0.353, respectively. Whereas CNN-LSTM was more suitable for other timescales, with R2, NSE, and RMSE being 0.904–0.999, 0.858–0.989, and 0.145–0.365 for estimating SPEI at 6-month timescale, respectively, and 0.858–0.998, 0.795–0.991, and 0.081–0.568 for estimating SPEI at 12-month timescale. Generally, the accuracy performance of SPEI methods can be ranked from best to worst as LSTM-type models, SVM, RNN, and empirical methods. The exception was that H-S exceeded RNN3 in TCZ and MPZ by 4.1–30.0 % for R2, 4.1–65.0 % for NSE, and 2.3–19.6 % for RMSE, respectively. Moreover, this study found that the accuracy performance of machine learning models for SPEI estimation got worse with the number of independent variables decreased. Overall, the variants of LSTM exerted excellent performance for multiscale SPEI estimation, which provided the most accurate prediction of meteorological, agroecological, and hydrological droughts throughout China." @default.
- W4386906010 created "2023-09-21" @default.
- W4386906010 creator A5004387898 @default.
- W4386906010 creator A5013643897 @default.
- W4386906010 creator A5038181897 @default.
- W4386906010 creator A5054036938 @default.
- W4386906010 creator A5058792509 @default.
- W4386906010 creator A5080062778 @default.
- W4386906010 date "2023-10-01" @default.
- W4386906010 modified "2023-10-16" @default.
- W4386906010 title "Standardized precipitation evapotranspiration index (SPEI) estimated using variant long short-term memory network at four climatic zones of China" @default.
- W4386906010 cites W1487289320 @default.
- W4386906010 cites W1975689228 @default.
- W4386906010 cites W1987667792 @default.
- W4386906010 cites W2002115844 @default.
- W4386906010 cites W2013515333 @default.
- W4386906010 cites W2017732481 @default.
- W4386906010 cites W2021432630 @default.
- W4386906010 cites W2064675550 @default.
- W4386906010 cites W2077968790 @default.
- W4386906010 cites W2079735306 @default.
- W4386906010 cites W2085683636 @default.
- W4386906010 cites W2112796928 @default.
- W4386906010 cites W2133872520 @default.
- W4386906010 cites W2146497925 @default.
- W4386906010 cites W2156909104 @default.
- W4386906010 cites W2165772416 @default.
- W4386906010 cites W2172396214 @default.
- W4386906010 cites W2195388612 @default.
- W4386906010 cites W2267186426 @default.
- W4386906010 cites W2527066115 @default.
- W4386906010 cites W2610778436 @default.
- W4386906010 cites W2771600062 @default.
- W4386906010 cites W2774547596 @default.
- W4386906010 cites W2789226993 @default.
- W4386906010 cites W2805774077 @default.
- W4386906010 cites W2884812134 @default.
- W4386906010 cites W2885195348 @default.
- W4386906010 cites W2888798257 @default.
- W4386906010 cites W2889246260 @default.
- W4386906010 cites W2901004617 @default.
- W4386906010 cites W2913267705 @default.
- W4386906010 cites W2923499515 @default.
- W4386906010 cites W2937854818 @default.
- W4386906010 cites W2949039742 @default.
- W4386906010 cites W2951645895 @default.
- W4386906010 cites W2951732540 @default.
- W4386906010 cites W2953049129 @default.
- W4386906010 cites W2972763557 @default.
- W4386906010 cites W2977638463 @default.
- W4386906010 cites W2984208750 @default.
- W4386906010 cites W3004879827 @default.
- W4386906010 cites W3006364117 @default.
- W4386906010 cites W3010047009 @default.
- W4386906010 cites W3010450455 @default.
- W4386906010 cites W3015416408 @default.
- W4386906010 cites W3021295700 @default.
- W4386906010 cites W3043392635 @default.
- W4386906010 cites W3046457451 @default.
- W4386906010 cites W3046973866 @default.
- W4386906010 cites W3054109655 @default.
- W4386906010 cites W3094128623 @default.
- W4386906010 cites W3097312306 @default.
- W4386906010 cites W3106370744 @default.
- W4386906010 cites W3123712479 @default.
- W4386906010 cites W3124635350 @default.
- W4386906010 cites W3161530068 @default.
- W4386906010 cites W3164032920 @default.
- W4386906010 cites W3172280330 @default.
- W4386906010 cites W3181049857 @default.
- W4386906010 cites W3186491181 @default.
- W4386906010 cites W3187883428 @default.
- W4386906010 cites W3189411510 @default.
- W4386906010 cites W3203946940 @default.
- W4386906010 cites W3216881645 @default.
- W4386906010 cites W4200002978 @default.
- W4386906010 cites W4200043061 @default.
- W4386906010 cites W4205516256 @default.
- W4386906010 cites W4213424803 @default.
- W4386906010 cites W4223556311 @default.
- W4386906010 cites W4254594842 @default.
- W4386906010 cites W4280556124 @default.
- W4386906010 cites W4308888629 @default.
- W4386906010 cites W4308921952 @default.
- W4386906010 cites W4310861695 @default.
- W4386906010 cites W4321496933 @default.
- W4386906010 cites W4322769159 @default.
- W4386906010 cites W4379521796 @default.
- W4386906010 cites W4380304662 @default.
- W4386906010 doi "https://doi.org/10.1016/j.compag.2023.108253" @default.
- W4386906010 hasPublicationYear "2023" @default.
- W4386906010 type Work @default.
- W4386906010 citedByCount "0" @default.
- W4386906010 crossrefType "journal-article" @default.
- W4386906010 hasAuthorship W4386906010A5004387898 @default.
- W4386906010 hasAuthorship W4386906010A5013643897 @default.
- W4386906010 hasAuthorship W4386906010A5038181897 @default.
- W4386906010 hasAuthorship W4386906010A5054036938 @default.