Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386906232> ?p ?o ?g. }
Showing items 1 to 92 of
92
with 100 items per page.
- W4386906232 endingPage "57" @default.
- W4386906232 startingPage "43" @default.
- W4386906232 abstract "Accurate identification of precipitating clouds is a challenging task. In the present work, Support Vector Machines, Decision Trees and Random Forests algorithms were applied to discriminate between precipitating clouds and non-precipitating clouds from a satellite weather image GOES-13 covering the Colombian territory. The objective of this study was to evaluate the performance of machine learning (ML) algorithms for digital classification of cloud masses in terms of thematic accuracy classification using the conventional Mahalanobis algorithm as benchmark. Results show that ML algorithms provide more accurate classification of cloud masses than conventional algorithms. The best accuracy was obtained using Random Forests (RF), with an overall thematic accuracy of 97%. Furthermore, the classification obtained with the RF algorithm was compared pixel-to-pixel with NASA Tropical Rainfall Measurement Mission (TRMM) rainfall estimates, obtaining an overall accuracy of 94%. ML algorithms can therefore be used to improve current precipitating clouds identification methods." @default.
- W4386906232 created "2023-09-21" @default.
- W4386906232 creator A5004243946 @default.
- W4386906232 creator A5036485900 @default.
- W4386906232 date "2014-08-26" @default.
- W4386906232 modified "2023-09-27" @default.
- W4386906232 title "Digital classification of cloud masses from weather imagery using machine learning algorithms" @default.
- W4386906232 cites W1967266522 @default.
- W4386906232 cites W1985372952 @default.
- W4386906232 cites W1986513933 @default.
- W4386906232 cites W2002584436 @default.
- W4386906232 cites W2028243789 @default.
- W4386906232 cites W2054202849 @default.
- W4386906232 cites W2060765785 @default.
- W4386906232 cites W2077006540 @default.
- W4386906232 cites W2079612193 @default.
- W4386906232 cites W2121705120 @default.
- W4386906232 cites W2125201264 @default.
- W4386906232 cites W2144286427 @default.
- W4386906232 cites W2154831295 @default.
- W4386906232 cites W2170505850 @default.
- W4386906232 cites W23771610 @default.
- W4386906232 cites W258662576 @default.
- W4386906232 cites W2787894218 @default.
- W4386906232 cites W4236354983 @default.
- W4386906232 doi "https://doi.org/10.17533/udea.redin.17254" @default.
- W4386906232 hasPublicationYear "2014" @default.
- W4386906232 type Work @default.
- W4386906232 citedByCount "0" @default.
- W4386906232 crossrefType "journal-article" @default.
- W4386906232 hasAuthorship W4386906232A5004243946 @default.
- W4386906232 hasAuthorship W4386906232A5036485900 @default.
- W4386906232 hasBestOaLocation W43869062321 @default.
- W4386906232 hasConcept C110083411 @default.
- W4386906232 hasConcept C111919701 @default.
- W4386906232 hasConcept C11413529 @default.
- W4386906232 hasConcept C116834253 @default.
- W4386906232 hasConcept C119857082 @default.
- W4386906232 hasConcept C12267149 @default.
- W4386906232 hasConcept C13280743 @default.
- W4386906232 hasConcept C154945302 @default.
- W4386906232 hasConcept C160633673 @default.
- W4386906232 hasConcept C169258074 @default.
- W4386906232 hasConcept C185798385 @default.
- W4386906232 hasConcept C1921717 @default.
- W4386906232 hasConcept C205649164 @default.
- W4386906232 hasConcept C41008148 @default.
- W4386906232 hasConcept C58640448 @default.
- W4386906232 hasConcept C59822182 @default.
- W4386906232 hasConcept C62649853 @default.
- W4386906232 hasConcept C79974875 @default.
- W4386906232 hasConcept C86803240 @default.
- W4386906232 hasConcept C93692415 @default.
- W4386906232 hasConceptScore W4386906232C110083411 @default.
- W4386906232 hasConceptScore W4386906232C111919701 @default.
- W4386906232 hasConceptScore W4386906232C11413529 @default.
- W4386906232 hasConceptScore W4386906232C116834253 @default.
- W4386906232 hasConceptScore W4386906232C119857082 @default.
- W4386906232 hasConceptScore W4386906232C12267149 @default.
- W4386906232 hasConceptScore W4386906232C13280743 @default.
- W4386906232 hasConceptScore W4386906232C154945302 @default.
- W4386906232 hasConceptScore W4386906232C160633673 @default.
- W4386906232 hasConceptScore W4386906232C169258074 @default.
- W4386906232 hasConceptScore W4386906232C185798385 @default.
- W4386906232 hasConceptScore W4386906232C1921717 @default.
- W4386906232 hasConceptScore W4386906232C205649164 @default.
- W4386906232 hasConceptScore W4386906232C41008148 @default.
- W4386906232 hasConceptScore W4386906232C58640448 @default.
- W4386906232 hasConceptScore W4386906232C59822182 @default.
- W4386906232 hasConceptScore W4386906232C62649853 @default.
- W4386906232 hasConceptScore W4386906232C79974875 @default.
- W4386906232 hasConceptScore W4386906232C86803240 @default.
- W4386906232 hasConceptScore W4386906232C93692415 @default.
- W4386906232 hasIssue "73" @default.
- W4386906232 hasLocation W43869062321 @default.
- W4386906232 hasOpenAccess W4386906232 @default.
- W4386906232 hasPrimaryLocation W43869062321 @default.
- W4386906232 hasRelatedWork W3034132578 @default.
- W4386906232 hasRelatedWork W3195168932 @default.
- W4386906232 hasRelatedWork W3195610867 @default.
- W4386906232 hasRelatedWork W4310761479 @default.
- W4386906232 hasRelatedWork W4316658362 @default.
- W4386906232 hasRelatedWork W4321369284 @default.
- W4386906232 hasRelatedWork W4321636153 @default.
- W4386906232 hasRelatedWork W4360585380 @default.
- W4386906232 hasRelatedWork W4364301731 @default.
- W4386906232 hasRelatedWork W4377964522 @default.
- W4386906232 isParatext "false" @default.
- W4386906232 isRetracted "false" @default.
- W4386906232 workType "article" @default.