Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386907204> ?p ?o ?g. }
Showing items 1 to 69 of
69
with 100 items per page.
- W4386907204 abstract "Reinforcement learning is well known for its ability to model sequential tasks and learn latent data patterns adaptively. Deep learning models have been widely explored and adopted in regression and classification tasks. However, deep learning has its limitations such as the assumption of equally spaced and ordered data, and the lack of ability to incorporate graph structure in terms of time-series prediction. Graphical neural network (GNN) has the ability to overcome these challenges and capture the temporal dependencies in time-series data. In this study, we propose a novel approach for predicting time-series data using GNN and monitoring with Reinforcement Learning (RL). GNNs are able to explicitly incorporate the graph structure of the data into the model, allowing them to capture temporal dependencies in a more natural way. This approach allows for more accurate predictions in complex temporal structures, such as those found in healthcare, traffic and weather forecasting. We also fine-tune our GraphRL model using a Bayesian optimisation technique to further improve performance. The proposed framework outperforms the baseline models in time-series forecasting and monitoring. The contributions of this study include the introduction of a novel GraphRL framework for time-series prediction and the demonstration of the effectiveness of GNNs in comparison to traditional deep learning models such as RNNs and LSTMs. Overall, this study demonstrates the potential of GraphRL in providing accurate and efficient predictions in dynamic RL environments." @default.
- W4386907204 created "2023-09-21" @default.
- W4386907204 creator A5012159374 @default.
- W4386907204 creator A5013968309 @default.
- W4386907204 creator A5049321721 @default.
- W4386907204 creator A5051614997 @default.
- W4386907204 creator A5065941595 @default.
- W4386907204 creator A5091932271 @default.
- W4386907204 date "2023-09-18" @default.
- W4386907204 modified "2023-09-27" @default.
- W4386907204 title "Graph-enabled Reinforcement Learning for Time Series Forecasting with Adaptive Intelligence" @default.
- W4386907204 doi "https://doi.org/10.48550/arxiv.2309.10186" @default.
- W4386907204 hasPublicationYear "2023" @default.
- W4386907204 type Work @default.
- W4386907204 citedByCount "0" @default.
- W4386907204 crossrefType "posted-content" @default.
- W4386907204 hasAuthorship W4386907204A5012159374 @default.
- W4386907204 hasAuthorship W4386907204A5013968309 @default.
- W4386907204 hasAuthorship W4386907204A5049321721 @default.
- W4386907204 hasAuthorship W4386907204A5051614997 @default.
- W4386907204 hasAuthorship W4386907204A5065941595 @default.
- W4386907204 hasAuthorship W4386907204A5091932271 @default.
- W4386907204 hasBestOaLocation W43869072041 @default.
- W4386907204 hasConcept C107673813 @default.
- W4386907204 hasConcept C108583219 @default.
- W4386907204 hasConcept C111368507 @default.
- W4386907204 hasConcept C119857082 @default.
- W4386907204 hasConcept C124101348 @default.
- W4386907204 hasConcept C12725497 @default.
- W4386907204 hasConcept C127313418 @default.
- W4386907204 hasConcept C132525143 @default.
- W4386907204 hasConcept C147168706 @default.
- W4386907204 hasConcept C151406439 @default.
- W4386907204 hasConcept C154945302 @default.
- W4386907204 hasConcept C41008148 @default.
- W4386907204 hasConcept C50644808 @default.
- W4386907204 hasConcept C80444323 @default.
- W4386907204 hasConcept C97541855 @default.
- W4386907204 hasConceptScore W4386907204C107673813 @default.
- W4386907204 hasConceptScore W4386907204C108583219 @default.
- W4386907204 hasConceptScore W4386907204C111368507 @default.
- W4386907204 hasConceptScore W4386907204C119857082 @default.
- W4386907204 hasConceptScore W4386907204C124101348 @default.
- W4386907204 hasConceptScore W4386907204C12725497 @default.
- W4386907204 hasConceptScore W4386907204C127313418 @default.
- W4386907204 hasConceptScore W4386907204C132525143 @default.
- W4386907204 hasConceptScore W4386907204C147168706 @default.
- W4386907204 hasConceptScore W4386907204C151406439 @default.
- W4386907204 hasConceptScore W4386907204C154945302 @default.
- W4386907204 hasConceptScore W4386907204C41008148 @default.
- W4386907204 hasConceptScore W4386907204C50644808 @default.
- W4386907204 hasConceptScore W4386907204C80444323 @default.
- W4386907204 hasConceptScore W4386907204C97541855 @default.
- W4386907204 hasLocation W43869072041 @default.
- W4386907204 hasOpenAccess W4386907204 @default.
- W4386907204 hasPrimaryLocation W43869072041 @default.
- W4386907204 hasRelatedWork W2795261237 @default.
- W4386907204 hasRelatedWork W3014300295 @default.
- W4386907204 hasRelatedWork W3164822677 @default.
- W4386907204 hasRelatedWork W4223943233 @default.
- W4386907204 hasRelatedWork W4225161397 @default.
- W4386907204 hasRelatedWork W4312200629 @default.
- W4386907204 hasRelatedWork W4360585206 @default.
- W4386907204 hasRelatedWork W4364306694 @default.
- W4386907204 hasRelatedWork W4380075502 @default.
- W4386907204 hasRelatedWork W4380086463 @default.
- W4386907204 isParatext "false" @default.
- W4386907204 isRetracted "false" @default.
- W4386907204 workType "article" @default.